

Modificação de resina Merrifield com selonas ou tionas N-heterocíclicas para remoção de mercúrio de águas contaminadas

Matheus D. P. Silva*(PG)¹, Marcelo G. Rosmaninho (PQ)¹, Rute C. Figueiredo (PQ)¹.

¹Universidade Federal de Ouro Preto, Departamento de Química/Instituto de Ciências Exatas e Biológicas, Ouro Preto-MG, Brasil, 35402-136.

RESUMO

A contaminação de corpos d'água por mercúrio é uma das principais consequências do garimpo ilegal de ouro. O mercúrio, presente no ambiente em diferentes formas químicas, apresenta alta toxicidade e capacidade de bioacumulação e biomagnificação, podendo causar danos neurológicos, renais e vasculares. Frente a esse problema, torna-se necessário o desenvolvimento de materiais seletivos para sua remoção em sistemas aquáticos. Nesse contexto, selonas e tionas *N*-heterocíclicas demonstram elevada afinidade pelo cátion mercúrio (Hg²⁺), sendo promissoras para funcionalização de resinas. A resina Merrifield, amplamente utilizada em síntese em fase sólida, destaca-se como uma matriz adequada para imobilização de ligantes seletivos, como as selonas ou tionas, visando à descontaminação de ambientes impactados por mercúrio.

Palavras-chave: Mercúrio, selonas N-heterocílcicas, tionas N-heterocílcicas, síntese orgânica em fase sólida, resina Merrifield.

and via the control of seconds in the reference as, notes in the reference as, since of gametic employed solution, reside merity in the control of the contr

Introdução

A crescente preocupação com os impactos ambientais e toxicológicos do mercúrio tem motivado estudos voltados à compreensão de seu comportamento no meio ambiente e suas interações com diferentes elementos químicos. O ciclo do mercúrio envolve reações complexas com compostos orgânicos e inorgânicos (1) e interações significativas com organismos vivos, favorecendo sua disseminação e toxicidade em diferentes níveis da cadeia alimentar.

Frente à toxicidade do mercúrio, têm-se explorado substâncias capazes de formar complexos estáveis com o metal, diminuindo sua biodisponibilidade e facilitando a sua remoção. Nesse contexto, elementos como o selênio e o enxofre se destacam por apresentarem características de bases macias de Pearson, o que favorece a coordenação com o mercúrio, também classificado como um ácido macio. Compostos derivados desses elementos, como selonas e tionas *N*-heterocíclicas, têm se mostrado promissores na complexação com mercúrio, devido à sua estrutura eletrônica e estabilidade química. Estudos demonstraram a formação de complexos estáveis entre selonas e bicloreto de mercúrio (2), bem como entre tionas e iodeto de mercúrio (3), ambos com geometrias próximas da tetraédrica e estabilizados por ligações de hidrogênio intramoleculares.

O uso de suportes sólidos como a resina de Merrifield tem possibilitado a imobilização de moléculas complexantes, aminoácidos ou ligantes específicos, possibilitando a captura seletiva de metais tóxicos. Desenvolvida inicialmente para a síntese de peptídeos, a resina de Merrifield se destaca por sua capacidade de facilitar reações em fase sólida, tornando-se uma ferramenta versátil em aplicações ambientais e biomoleculares (4). Dessa forma, a combinação entre conhecimento das propriedades químicas de

elementos como selênio e enxofre e a aplicação de tecnologias como suportes poliméricos representa um caminho promissor para o desenvolvimento de estratégias mais eficazes para a diminuição da contaminação de mercúrio.

Experimental

Síntese do derivado 1-metilimidazólico

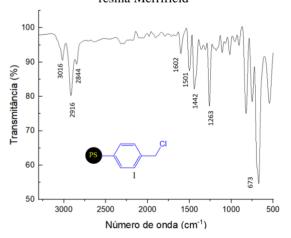
A resina Merrifield (500 mg) (2,25 mmol de Cl por grama de resina) foi adicionada a um balão de fundo redondo contendo pérolas de vidro e 10 mL de acetonitrila. Após duas horas, foi adicionado 1,80 mL de 1-metilimidazol (22,5 mmol). A reação foi mantida a 80 °C por 24 horas. Ao final da reação, foi obtido um sólido branco que foi filtrado a vácuo e lavado 5 vezes com 10 mL de acetonitrila a quente, 50 mL de uma solução de água destilada e metanol (1:1) e 50 mL de metanol. O material obtido foi secado a temperatura ambiente.

Modificação da resina com uma tiona

O derivado 1-metilimidazólico (685 mg), carbonato de sódio (1,59 g), enxofre molecular (480 mg) e 50 mL de metanol foram adicionados a um balão de fundo redondo, contendo pérolas de vidro. A mistura reacional foi mantida a 60 °C durante 24 horas. A resina inicialmente branca, ao fim da reação apresentou coloração amarelo alaranjado e a reação foi interrompida. O produto obtido foi filtrado a vácuo e lavado um número suficiente de vezes com acetona a quente para remoção do enxofre molecular.

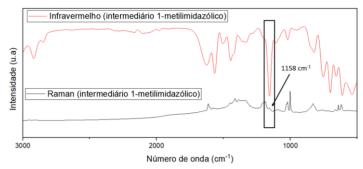
Modificação da resina com uma selona

O derivado 1-metilimidazólico (266 mg), carbonato de sódio (636 mg), selênio molecular (468 mg) e 10 mL de metanol foram adicionados a um balão contendo pérolas de vidro. A mistura reacional foi mantida a 60 °C durante 24 horas. O produto obtido foi filtrado a vácuo, lavado com acetona e os residuos de selênio molecular foram removidos por catação.


Figura 1. Rota de síntese

Resultados e Discussão

No espectro de absorção na região do infravermelho da resina Merrifield (figura 2), observa-se uma banda em 3016 cm⁻¹ referente ao estiramento da ligação C-H de carbono hibridado sp². As bandas em 2916 cm⁻¹ e 2844 cm⁻¹ são relativas aos estiramentos simétrico e assimétrico da ligação C-H de carbono hibridado sp³, respectivamente. As bandas em 1602 cm⁻¹ e 1501 cm⁻¹, são atribuídas aos estiramentos das ligações C=C relacionadas ao anel benzílico da resina Merrifield. A banda em 1442 cm⁻¹ está relacionada à deformação no plano de CH₂ do tipo tesoura. A banda em 1263 cm⁻¹ é referente à vibração de deformação no plano do tipo balanço de CH₂. A banda em 673 cm⁻¹ é referente ao estiramento da ligação C-Cl.


Figura 2. Espectro de absorção na região do Infravermelho da resina Merrifield

Na sobreposição entre os espectros de absorção na região do infravermelho e espectro Raman do derivado 1-metilimidazólico (figura 3), observa-se uma banda em 1158 cm⁻¹ relacionada ao estiramento da ligação C-N. Essa banda e a ausência das bandas em 1263 cm⁻¹ e 673 cm⁻¹, referentes respectivamente à vibração de deformação do grupo CH₂ e ao estiramento da ligação C-Cl indicam a obtenção do composto.

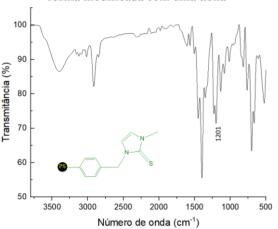


Figura 3. Sobreposição entre o espectro de absorção na região do infravermelho e Raman do derivado 1-metilimidazólico

A alteração da coloração da resina observada ao microscópio, sugere a ocorrência da reação com o enxofre e a formação da tiona. No espectro 4, pode-se observar uma banda em 1201 cm⁻¹ referente ao estiramento da ligação C=S.

Figura 4. Espectro de absorção na região do infravermelho da resina modificada com uma tiona

Conclusões

Todos os compostos sintetizados foram caracterizados por meio da técnica espectroscopia de absorção na região do infravermelho e espectroscopia Raman e confirmada a obtenção da resina modificada com tiona. A resina modificada com selona também foi sintetizada e está em processo de caracterização. A etapa seguinte será a utilização das resinas modificadas para a complexação de mercúrio.

Agradecimentos

Referências

- 1. G. Genchi; M. S. Sinicropi; A. Carocci; G. Lauria; A. Catalano, *Int. J. Environ. Res. Public Health* 2017, 14(1), 74. DOI: 10.3390/ijerph14010074.
- 2. J. H. Palmer; G. Parkin, *Polyhedron* 2012, 52, 658–668. DOI: 10.1016/j.poly.2012.07.090.
- 3. G. Pavlović; Z. Popović; Ž. Soldin; D. Matković-Čalogović, *Acta Crystallogr. Sect. C: Struct. Chem.* 2000, 56(7), 801–803. DOI: 10.1107/S0108270100005825.
- 4. R. B. Merrifield, *J. Am. Chem. Soc.* 1963, 85(14), 2149–2154. DOI: 10.1021/ja00897a025.