

NOVOS COMPLEXOS DE RU(II) COM LIGANTES HIDROXIQUINOLÍNICOS HALOGENADOS: UMA BUSCA POR NOVOS METALOFÁRMACOS CONTRA O CANCER DE PULMÃO

Leonan I. C. R. Santos (PG)¹, Lorrana Cachuíte Mendes(PG)², Jerica M. Montilla-Suárez(PG)³, Camila Carrião Machado Garcia (PQ), Rodrigo S. Corrêa (PQ)¹,

- ¹ Universidade Federal de Ouro Preto, Departamento de Química/Instituto de Ciências Exatas e Biológicas, Ouro Preto, Minas Gerais, Brasil, 35402-136.
- ²Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas/Instituto de Ciências Exatas e Biológicas, Ouro Preto, Minas Gerais, Brasil, 35402-136.
- ³Universidade de São Carlos, Departamento de Química, São Paulo, Brasil, 13565-905.

*e-mail: leonan.santos@ufop.edu.br

RESUMO

Neste trabalho é apresentada a síntese e caracterização de 3 novos complexos de Ru(II) de fórmula geral [Ru(bipy)(PPh₃)₂(XXHQ)][PF₆] onde bipy = 2,2'-bipiridina, PPh₃ = trifenilfosfina, e XXHQ = 5,7-dicloro-8-hidroxiquinolina (ClHQ), 5,7-dibromo-8-hidroxiquinolina (BrHQ) ou 5,7-diiodo-8-hidroxiquinolina (IHQ). Os complexos foram caracterizados via análise elementar, condutividade molar, ponto de decomposição, voltametria cíclica, espectroscopias de UV-Vis, infravermelho e RMN de ³¹P{¹H}, ¹H e ¹³C{¹H}, espectrometria de massas e difração de raios X. A lipofilicidade e citotoxicidade dos complexos foi avaliada para as linhagens MRC-5 de fibroblasto de pulmão saudável e A549 de câncer de pulmão. Todos os complexos interagem com o DNA de modo eletrostático ou metalante. O potencial antioxidante foi medido para os 3 complexos pelo método do DPPH, no qual todos mostraram potencial antioxidante.

Palavras-chave: Complexos de Ru(II), Hidroxiquinolínas Halogenadas, Interação com DNA, Citotoxicidade, Atividade Antioxidante

Introdução

Complexos de Ru(II) tem sido investigados cada vez mais em função do seu grande potencial na busca por novos agentes antitumorais. Uma estratégia nesta busca é usar como ligantes fármacos já conhecidos, como é evidenciado no complexo [Ru(5-FU)(PPh₃)₂(bipy)]PF₆ que se mostrou até seis vezes mais potente contra algumas linhagens tumorais do que o ligante isolado 5-fluorouracil, utilizado clínicamente contra o câncer. 1

Assim, a classe de ligantes pesquisados neste trabalho são as 8-hidroxiquinolinas-5,7-dialogenadas, as quais já foram pesquisadas em sistemas "half-sandwich", mas suas caracteristicas sinérgicas aos complexos de Ru(II) polipiridinicos/fosfinicos bem como a influência dos halogênios ainda é inédita e sendo investigada por nosso grupo de pesquisa.

Experimental

Todos os complexos foram sintetizados a partir da reação entre 1,5 eq da respectiva 8-hidroxiquinolina e 1 eq. do complexo precursor [RuCl₂(PPh₃)₂(bipy)] sob atmosfera inerte e refluxo em uma solução 2:1 de 30 mL CH₂Cl₂:MeOH e KPF₆ (1 eq.). Como agente desprotonante foi utilizada trietilamina (1,5 eq.). Após 24 h o volume da solução é reduzido a 2 mL e o complexo é precipitado com água e lavado com Et₂O. A purificação do material foi feita por cristalização pela técnica de evaporação lenta. O rendimento individual de cada complexo foi de 69% (RuClHQ), 71% (RuBrHQ)

e 86% (RuIHQ).

Caracterizações e Ensaios biológicos:

A espectrometria de massas de alta resolução foi realizada em um Thermo Scientific Q Exactive Plus Orbitrap Mass Spectrometer, no modo ESI-TOF. As amostras foram solubilizadas em metanol grau HPLC. Os ensaios de RMN foram realizados no Espectrofotômetro de Ressonância Magnética Nuclear Ascend Bruker de 400MHz utilizando acetona-d⁶ como solvente. As medidas de difração de raios X foram realizadas no difratômetro SynergyS, usando radiação CuKα (1,54056 Å) monocromada por grafite.

Os dados coletados foram tratados por programas cristalográficos específicos. Os ensaios de lipofilicidade foram realizados utilizando o método shake-flask utilizando n-octanol/água. As leituras de absorbância das fases aquosa e orgânica foram realizadas em um espectrofotômetro Genesys 10S na faixa de 200 a 800 nm. A viscosidade relativa foi calculada utilizando um viscosímetro de Oswald, em banho maria com temperatura de 37°C, por adição sucessiva de complexo a uma solução de 50 µmol.L-¹ de CT-DNA. A atividade biológica foi mensurada através do ensaio de sobrevivência clonogênica utilizando as linhagens celulares A-549 e MRC-5.²

Resultados e Discussão

A espectrometria de massas revelou picos do íon molecular correspondentes a [M]⁺, com o complexo sendo monocatiônico. Os picos se apresentam em 994,1290 Da para o RuClHQ, 1084,0117 Da para o RuBrHQ, e 1117,9930 Da para o RuIHQ.

Os estudos de ressonância magnética nuclear de ³¹P {¹H} confirmam a pureza do complexo através da observação de um singleto na região de 20 ppm, indicando a formação de apenas um complexo, bem como a presença de um heptupleto em -143 ppm referente a presença do contra-íon hexafluorofosfato. Os espectros de ¹H e ¹³C {¹H} confirmam a presença de todos os hidrogênios e carbonos da amostra.

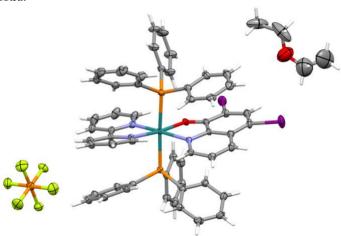


Figura 1. Espectro de ressonâsncia magnética nuclear dos complexos

Os dados cristalográficos confirmam a geometria do complexo, como sendo um octaédro distorcido , com os ligantes trifenilfosfina em axial e os ligantes quelato em equatorial. Pela análise conformacional, é possível verificar que as trifenilfosfinas se apresentam eclipsadas uma a outra, com um ângulo de torção de 8,92°. Isto se explica pelas interações do tipo π -stacking que ocorrem entre o ligante trifenilfosfina e os aneis N-heterocíclicos da bipiridina e da hidroxiquinolina..

Os ensaios de atividade biológica demonstraram que os três complexos tem citotoxicidades proximas contra a linhagem de adenocarcinoma de pulmão (A-549). Contra a linhagem de fibroblasto de pulmão saudável (MRC-5), o complexo RuIHQ apresentou maior citotoxicidade enquanto o RuClHQ apresentou a menor. Este achado pode ser justificado pela lipossolubilidade dos complexos, onde pelos valores de LogP se observa que o complexo RuIHQ é mais lipofilico do que o complexo RuClHQ, permitindo deduzir sua facilidade de permear a membrana plasmática mais facilmente. Todos os complexos apresentaram seletividades similares.

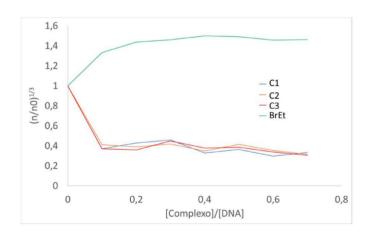


Tabela 1. Concentração inibitória contra linhagens celulares, indice de seletividade e lipofilicidade dos complexos

Complexos	MRC-5	A-549	IS	LogP
RuClHQ	6,45	2,36	2,73	1,21
RuBrHQ	5,48	2,33	2,35	1,45
RuIHQ	5,20	2,29	2,27	1,87

 $IS = IC_{50}(MRC-5)/IC_{50}(A-549)$

Os ensaios de viscosidade relativa mostram que a interação das moléculas com o DNA provoca uma redução da viscosidade da solução. Isso pode ser justificado por interações tanto do tipo eletrostático quanto metalações, podendo ser este o mecanismo de ação antitumoral.

Figura 2. Gráfico de viscosidade relativa da solução em função da razão [Complexo]/[DNA].

Conclusões

O presente trabalho obteve sucesso na síntese de 3 complexos inéditos de Ru(II) com a estrutura molecular esperada. Os ensaios de atividade biológica apontam as moléculas como promissoras no processo de otimização na busca de novos metalofármacos.

Agradecimentos

Agradecimentos ao CNPQ, CAPES, FAPEMIG e Universidade Federal de Ouro Preto pela infraestrutura e recursos financeiros/institucionais. Ao laboratório multiusuário de caracterização de moléculas (LMCM) e ao laboratório de genômica e reparo de DNA (LabDNA) pelos ensaios biológicos e de caracterização.

Referências

- Silva, V.R., Corrêa, R.S., Santos, L.d.S. et al. Sci Rep, 2008, 8, 288
- 2. L. I. C. R. Santos, Dissertação de Mestrado, Universidade Federal de Ouro Preto, 2024.