

INFLUÊNCIA DO CLORETO DE SÓDIO NA CARBONIZAÇÃO DO ÁCIDO ASCÓRBICO: ESTRUTURA E **MORFOLOGIA**

Andressa S. Dias (G)1*; Jaderson L. Milagres (PQ)1; Renê C. Da Silva (PQ)2; Márcio J. da Silva (PQ)3

- ¹ Departamento de Ciências Exatas e da Terra, Universidade do Estado de Minas Gerais, Av. Olegário Maciel, 1427, Industrial, 36500-000 Ubá, Minas Gerais, Brasil.
 - ² Departamento de Física, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900 Viçosa, Minas Gerais, Brasil.
 - ³ Departamento de Química, Universidade Federal de Viçosa, Av. PH Holfs, s/n, 36570-900 Viçosa, Minas Gerais, Brasil.

RESUMO

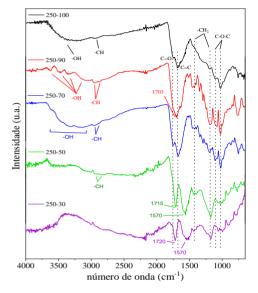
Este trabalho investigou a carbonização térmica do ácido ascórbico (AA) com diferentes proporções de cloreto de sódio (NaCl) nas temperaturas de 250 °C, 350 °C e 450 °C. As amostras foram caracterizadas por FTIR, TG, MEV, UV-Vis e condutividade elétrica. Explorouse o papel do NaCl como modificador morfológico e estrutural, destacando sua capacidade de reduzir a temperatura de degradação do AA e favorecer a formação de estruturas conjugadas. As morfologias variaram entre esponjosas e rochosas, com propriedades ajustáveis via controle de proporção e temperatura. A 250 °C, houve dissolução de compostos orgânicos com potencial para a produção de produtos de alto valor agregado e a 450 °C formaram-se partículas coloidais estáveis após maceração. Este estudo contribui com uma abordagem sustentável e versátil para a produção de novos materiais funcionais, com potencial de aplicação em eletrodos, sensores e dispositivos semicondutores.

Palavras-chave: Biomateriais; Caracterização; Morfologia; Valorização química

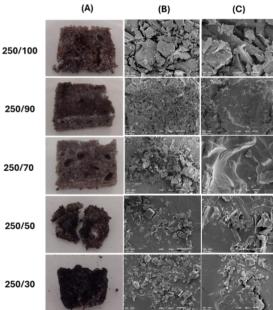
Introdução

A busca por materiais sustentáveis com alta estabilidade térmica, boa condutividade elétrica e comportamento químico inerte tem impulsionado o desenvolvimento de materiais carbonizados para eletrodos, sensores e dispositivos semicondutores. (1,2) Resíduos naturais, como celulose, lignina, entre outros, são comumente utilizados, (3,4) porém ácidos desempenham um papel crucial nas reações de desidratação e no controle da morfologia. (5) O ácido ascórbico (AA) surge como precursor sintético devido à sua pureza, alto teor de carbono e ao controle mais eficiente da morfologia do material, impactando diretamente suas propriedades eletroquímicas. (6) Até o momento, pouco se sabe sobre a carbonização do AA na presença de sais, especialmente o cloreto de sódio (NaCl), que pode atuar como agente modificador. Embora existam estudos iniciais sobre a degradação do ácido ascórbico, (6,7,8) este trabalho é inovador ao explorar o papel do NaCl na modificação estrutural e morfológica durante a carbonização do AA. O objetivo deste estudo é sintetizar e caracterizar materiais carbonizados de AA/NaCl, explorando suas propriedades estruturais e funcionais para aplicações industriais.

Experimental


Foram preparadas amostras carbonizadas a partir de ácido ascórbico (AA) e cloreto de sódio (NaCl) em cinco proporções mássicas AA:NaCl (% m/m) de 100:0; 90:10; 70:30; 50:50 e 30:70, mantendose a massa total de 3,0 g. As misturas foram dissolvidas em 10 mL de água destilada sob agitação a 60 °C e, em seguida, submetidas à carbonização em forno mufla a 250 °C, 350 °C e 450 °C por 1 hora. Após o resfriamento, os materiais foram triturados e armazenados. As amostras foram caracterizadas por Espectroscopia na região do Infravermelho com Transformada de Fourier (FTIR), Microscopia Eletrônica de Varredura com Espectroscopia de Energia Dispersiva de Raios-X (MEV/EDS) e análise termogravimétrica (TG/DSC). A estabilidade em água foi avaliada por condutividade elétrica e espectroscopia UV-Vis após 24 horas de agitação.

Resultados e Discussão


Os espectros de FTIR (Figura 1) indicaram que, a partir de 250 °C, a mistura de ácido ascórbico (AA) e cloreto de sódio (NaCl) apresentou redução nos grupos hidroxila e o surgimento de novas funcionalidades, como carbonilas e insaturações, típicas de proc<mark>essos</mark> de desidratação e reorganização molecular. Esse fenômeno foi observado apenas em temperaturas mais altas de carbonização para o AA puro, destacando o papel ativo do NaCl na modificação estrutural. A 350°C e 450°C, as amostras com NaCl formaram estruturas mais conjugadas, o que favorece a condução de elétrons, um aspecto essencial para materiais condutores e semicondutores. As alterações nos espectros sugerem que o NaCl facilita a estruturação do material, permitindo a obtenção de propriedades eletroquímicas mais eficientes. Em relação à morfologia verificadas pelo MEV (Figura 2), as amostras apresentaram texturas distintas conforme se altera a proporção AA:NaCl.

Observou-se desde superfícies quebradiças até texturas esponjosas, com distribuição homogênea dos elementos, conforme observados por EDS.

Figura 1. Espectro de Infravermelho das amostras de acido ascórbico (AA) com diferentes proporções de cloreto de sódio na temperatura de 250°C. Onde 100, 90, 70, 50 e 30 representam a proporção de AA.

Figura 2. Comparação de imagens de Microscopia Eletrônica de Varredura (MEV) geradas das misturas de ácido ascórbico e cloreto de sódio carbonizadas a 250°C. Cada proporção é representa pela temperatura / porcentagem m/m de ácido ascórbico. (A) Imagens macro das amostras após a carbonização (B) Amostras no MEV com resolução de 50 μm. (C) Amostras no MEV com resolução de 10 μm.

A análise térmica (TG) evidenciou mudanças no perfil de decomposição do AA na presença de NaCl, indicando uma menor energia necessária para a degradação térmica. Além disso, foi observada uma baixa taxa de decomposição ao se atingir 700°C, sugerindo maior estabilidade térmica do material carbonizado.

Ensaios preliminares de solubilidade em água mostraram que as amostras carbonizadas a 250°C nas proporções de 100, 90 e 70 de AA apresentaram dissolução de compostos orgânicos, o que sugere a possibilidade de produzir compostos de valor agregado. Por outro lado, as amostras com 50 e 30 de AA exibiram maior estabilidade, sem dissolução significativa. À medida que a temperatura de carbonização aumentou para 350°C e 450°C, o material manteve sua estabilidade para todas as proporções com NaCl, com formação de partículas menores que 1 µm que podem ser vantajosas para modulação de propriedades, como condutividade e reatividade, em aplicações como eletrodos e sensores. A caracterização das amostras por MEV e a análise da solução aquosa por UV-Vis e condutividade confirmaram e distinguiram os compostos dissolvidos dos materiais particulados, comprovando a presença de estruturas coloidais estáveis em determinadas condições.

Conclusões

A carbonização do ácido ascórbico na presença de cloreto de sódio demonstrou ser uma abordagem promissora para o desenvolvimento de materiais carbonizados com excelentes propriedades para aplicações em eletrodos, sensores e dispositivos semicondutores. O NaCl facilitou a estruturação do material, promovendo maior estabilidade térmica e modificando a morfologia das amostras, com a formação de estruturas mais conjugadas. A solubilidade controlada e a possível geração de compostos de valor agregado indicam o potencial para a valorização química do ácido ascórbico. Este estudo abre caminho para pesquisas futuras, explorando diferentes sais e condições de carbonização, visando a otimização das propriedades dos materiais e suas aplicações em tecnologias sustentáveis e avançadas.

Agradecimentos

Universidade do Estado de Minas Gerais (UEMG) e Universidade Federal de Viçosa (UFV)

Referências

- X. Fan; Y. Li; Q. Jiang; C. Wu, Chem. Commun. 2024, 60, 3819-3833.
- W. Zhang; Y. Zhang; S. Shen; J. Liu; Q. Li, Green Chem. 2025, 27, 2172-2184.
- 3. Y. Hui; Y. Shewen; Z. Jiaming; L. Tongxiang, Frontiers in Chemistry 2019, 7, 274.
- 4. Y. Yan; W. Sun; Y. Wei; K. Liu; J. Ma; G. Hu, Nanomaterials 2025, 15, 315.
- 5. J. Yan; H. Wu; W. Shen; S. Guo, RSC Adv., 2016, 6, 37555.
- 6. X. Zhou; L. Xu; X. Liu; J. Zhang; H. Diao; X. Ma, Chem. Res. Chin. Univ. 2018, 34, 628-634.
- 7. K.D. Cunha; M.C. Souza; B.S. Oliveira; T.P. Silva, Braz. J. Food Technol. 2014, 17, 139-145.
- 8. S. Basak; L. Shaik; S. Chakraborty, Avanç. Quím. Alimentar 2023, 2, 100333.