

Explorando as interações entre a carnosina e diferentes aminoácidos: Uma abordagem computacional baseada em parâmetros termodinâmicos

Júlia K. A. Luís¹ (G), Luís F. Q. Santana¹ (G), Mateus A. Gonçalves*² (PQ)

¹Universidade do Estado de Minas Gerais, Unidade Divinóplis, Minas Gerais, Brasil ²Universidade Federal de Lavras, UFLA-MG, Lavras, Minas Gerais, Barsil

E-mails: julia.1665908@discente.uemg.br; luis.1698645@discente.uemg.br; mateus.gonçalves@uemg.br.

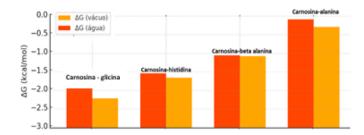
RESUMO

O presente estudo emprega métodos de química computacional, com ênfase na Teoria do Funcional da Densidade (DFT), a fim de analisar a estabilidade termodinâmica das interações entre a carnosina e os aminoácidos (beta-alanina, histidina, glicina e alanina). A carnosina, reconhecida por suas propriedades tamponantes e antioxidantes, tem sua eficiência funcional influenciada por essas interações intermoleculares. Foram realizados cálculos da energia livre de Gibbs (ΔG) visando avaliar a afinidade e a reatividade eletrônica dos complexos formados. O objetivo é compreender como as características estruturais e eletrônicas dos aminoácidos influenciam diretamente na estabilidade dos complexos com a carnosina, contribuindo para aplicações em bioquímica, fisiologia muscular e no desenvolvimento de agentes terapêuticos antioxidantes.

Palavras-chave: Química computacional, DFT, Aminoácidos, Carnosina, Estabilidade

Introdução

A carnosina, um dipeptídeo formado por beta-alanina e histidina, destaca-se por sua ampla atuação nos tecidos musculares e neurais, onde exerce funções fundamentais como a regulação do pH intracelular e a neutralização de espécies reativas de oxigênio. Tais propriedades conferem à molécula um papel essencial na proteção contra a fadiga muscular e o estresse oxidativo, além de potenciais efeitos neuroprotetores. No contexto da bioquímica e fisiologia, compreender as interações moleculares da carnosina com aminoácidos livres é de grande relevância, pois tais associações podem influenciar sua estabilidade, reatividade e funcionalidade biológica^{1,2}. Com os avanços da química computacional, especialmente com o uso da Teoria do Funcional da Densidade (DFT), tornou-se possível modelar e prever com precisão essas interações intermoleculares. Assim, este estudo se propõe a investigar, por meio de cálculos teóricos, as propriedades estruturais e termodinâmicas dos complexos formados entre a carnosina e diferentes aminoácidos, visando contribuir para a compreensão de seus mecanismos de ação e potenciais aplicações terapêuticas³. Com isso, busca-se compreender especificamente a sua eficiência funcional frente à fadiga muscular e ao estresse oxidativo.


Experimental

A primeira etapa do trabalho consistiu na construção das estruturas moleculares, realizada com o auxílio do programa GaussView. Em seguida, as estruturas foram otimizadas no programa Gaussian 09^4 , empregando a Teoria do Funcional da Densidade (DFT) com o funcional B3LYP e o conjunto de base 6-31G para todos os átomos. Na segunda etapa, foram realizados cálculos de frequência vibracional com o objetivo de obter a energia livre de Gibbs (ΔG) do sistema. Todos os cálculos foram conduzidos tanto no vácuo quanto utilizando o modelo de solvente implícito, denominado de "PCM" (Polarizable Continuum Model) 5 , considerando água como meio solvente.

Resultados e Discussão

Tabela 1. Valores de ΔG no vácuo e no solvente implícito (água) dos sistemas estudados.

Sistema	ΔG (vácuo) (kcal/mol)	ΔG (água) (kcal/mol)
Carnosina-histidina	-1.34	-1.46
Carnosina-alanina	-2.71	-2.91
Carnosina-beta-alanina	-1.92	-1.95
Carnosina-glicina	-0.79	-1,08

Grafico 1. Comparação dos valores de delta ΔG .

Conforme destacado na Tabela 1 e no Gráfico 1, os valores de energia livre de Gibbs (ΔG) apresentam-se para diferentes complexos envolvendo carnosina em meio gasoso (vácuo) e aquoso (solvente implícito). Desta forma, observa-se que o complexo carnosina-alanina apresentou o valor de ΔG mais negativo, demonstrando assim uma maior estabilidade termodinâmica em relação aos demais sistemas. Este, evidencia uma presença de características estruturais da alanina, como a cadeia lateral curta e apolar (grupo metil) possibilitando assim um melhor ajuste conformacional à carnosina, tendendo a maiores interações hidrofóbicas estáveis. De mesmo modo, a ausência de grupos volumosos ou altamente eletronegativos reduz repulsões estéricas e eletrônicas, permitindo uma complementaridade de maior eficiência entre as moléculas. Esse equilíbrio entre simplicidade estrutural e a capacidade de interação contribui para que a alanina estabeleça o complexo mais estável dentre os demais aminoácidos analisados.

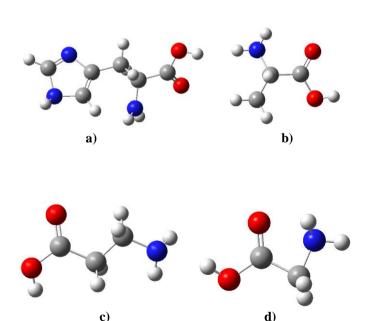


Figura 1. Aminoácidos estudados. a) histidina, b) alanina, c) beta-alanina, d) glicina.

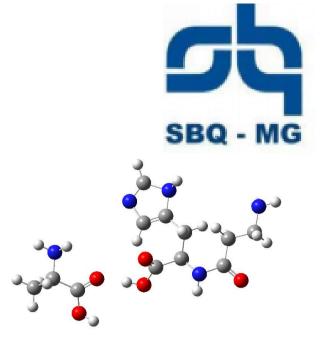


Figura 2. Interação entre a carnosina e a alanina.

Conclusões

Com base nos dados apresentados, pode-se concluir que a interação entre a carnosina e a alanina é termodinamicamente mais favorável entre os sistemas analisados, tanto no vácuo quanto em meio aquoso, devido a um equilíbrio ideal: cadeia lateral pequena, não repulsões e interações favoráveis. Esses resultados indicam uma possível seletividade da carnosina por determinados aminoácidos, o que pode ter implicações em sua atividade biológica. No entanto, os valores de ΔG refletem apenas aspectos energéticos globais. Como continuidade do estudo, serão realizados novos cálculos envolvendo dímeros dos aminoácidos, análises eletrônicas e de orbitais moleculares, com o objetivo de aprofundar a compreensão dos mecanismos envolvidos nas interações intermoleculares observadas.

Agradecimentos

Referências

- 1- BOLDYREV, A. A.; ALDINI, G.; DERAVE, W. Physiology and pathophysiology of carnosine.
- 2- GONÇALVES, M. A. et al. Chemical Physics Letters, 609, p. 88-92, 2014.
- 3- CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. 2. ed. Chichester.
- 4- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
- 5- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3093 (2005).