

Estudo de fotoproteção em matrizes poliméricas de PEG 4000 incorporadas com Quercetina Sofia L. Guimarães^{1*} (G), Laura C Campideli² (G), Ângela L. Andrade³ (PG), Daniel de L. Silva⁴ (PG), Kátia M. Novack⁵ (PG), Leonan I. de C. R. e Santos⁶ (PG), Rodrigo de S. Correa⁷ (PG), Viviane M. R. dos Santos⁸ (PG).

Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil
Departamento de Química, Instituto de Ciências Biológicas e Exatas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil.

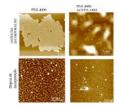
*sofia.luz@aluno.ufop.edu.br

Materiais poliméricos têm se destacado em sistemas de liberação controlada de fármacos por oferecerem vantagens como maior biodisponibilidade, redução de efeitos adversos e melhor adesão ao tratamento. Este estudo teve como objetivo sintetizar matrizes de PEG e seu derivado acetilado para incorporação da Quercetina, um flavonoide com propriedades anticâncer, buscando otimizar sua liberação e eficácia terapêutica. As amostras foram caracterizadas por MFA, MEV, Potencial Zeta e FTIR, e avaliadas quanto ao fator de proteção solar (FPS), atividade antimicrobiana, viabilidade celular e difração de raios X.

Palavras-chave: Quercetina, Polietilenoglicol, Fotoproteção, Incorporação.

Introdução

O aumento dos casos de câncer de pele, causado principalmente pela alta exposição aos raios UV, tem impulsionado o desenvolvimento de fotoprotetores. A Quercetina, um flavonoide antioxidante, destaca-se por suas propriedades anti-inflamatórias, antivirais e protetoras contra o estresse oxidativo. Além disso, a Quercetina ainda possui efeito anticancerígeno para melanoma. Já o polietilenoglicol (PEG) é um polímero biocompatível, não tóxico e solúvel, amplamente utilizado em sistemas de liberação controlada devido à sua flexibilidade e capacidade de bioconjugação. A combinação desses compostos representa uma estratégia promissora para formulações mais eficazes e seguras.


Experimental

Material e métodos

A Quercetina foi incorporada ao PEG 4000 e ao PEG 4000 acetilado por refluxo durante 4 horas a 35 °C, sob agitação constante. A caracterização das amostras foi realizada por Microscopia de Força Atômica (MFA) e Potencial Zeta. O fator de proteção solar (FPS) foi determinado pelo método de Mansur, utilizando espectrofotometria. Também foram conduzidas análises de atividade antibacteriana, viabilidade celular e difração de raios X (DRX) para avaliação das propriedades das formulações.

Resultados e Discussão

Ao realizarmos a caracterização por MFA observamos que todos os casos, mudanças consideráveis na organização do filme podem ser vistas, produzido por uma modificação da cadeia polimérica (Figura 1).

Figura 1. Imagens MFA do PEG 4000, e do seu derivado antes e depois do processo de incorporação.

A análise do Potencial Zeta das amostras de PEG puro e incorporado revelou variações significativas nos valores. Apesar de valores acima de |±30| mV serem recomendados para estabilidade, a presença de grupos volumosos na superfície do PEG promove estabilização estérica, sendo suficiente para manter a estabilidade das formulações.

.**Tabela 1**. Potencial Zeta do PEG 4000 Puro e Acetilado e suas incorporações

Amostra	Potencial Zeta (mV)	
PEG 4000 acetilado	-14.8 ± 1.58	
incorporado		
PEG 4000 incorporado	$-17,1 \pm 0,451$	
PEG 4000 acetilado	-20.8 ± 1.55	
PEG 4000 puro	-23.6 ± 1.42	

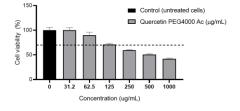
A análise do Fator de Proteção Solar (FPS) indicou que a Quercetina incorporada ao PEG 4000 acetilado apresentou resultados promissores, ultrapassando o valor mínimo de FPS 6 na

concentração de 1000 μg/mL, com absorbância de 7,75, evidenciando seu potencial como agente fotoprotetor.

Tabela 2. FPS da solução de Quercetina incorporada ao PEG 4000 puro.

Conc. mg/mL	Quercetina + PEG 4000 puro
0,02	$1,434234 \pm 0,013709$
0,03	$1,287016 \pm 0,00816$
0,05	$2,085646 \pm 0,022278$
0,07	$2,962295 \pm 0,015163$
0,1	$3,399671 \pm 0,013961$

Tabela 3. FPS da solução de Quercetina incorporada ao PEG 4000 acetilado.


Conc. mg/mL	Quercetina + PEG 4000
	acetilado
0,02	$1,434234 \pm 0,010432$
0,03	$2,01544 \pm 0,011088$
0,05	$3,464211 \pm 0,004694$
0,07	$4,999144 \pm 0,046349$
0,1	$7,749968 \pm 0,00831$

A Quercetina incorporada ao PEG 4000 acetilado não apresentou atividade antibacteriana contra *S. aureus*, *S. epidermidis* e *P. aeruginosa*, bactérias comuns da microbiota cutânea. Esse resultado é considerado positivo, pois indica que o fotoprotetor desenvolvido não interfere no equilíbrio da microbiota da pele, evitando riscos de dermatites.

Tabela 4. Atividade antibacteriana da Quercetina pura e incorporada ao PEG 4000 acetilado.

	S. aureus	S. epidermidis	P. aeruginosa
Quercetina	1 mg/mL	0.25 mg/mL	Sem atividade
PEG 4000 Ac + Quercetina	2 mg/mL	2 mg/mL	Sem atividade

Ao avaliarmos a viabilidade celular da quercetina incorporada ao PEG 4000 acetilado, notamos a ausência de citotoxicidade com as três menores concentrações (viabilidade > 70%). Considerando que as concentrações efetivas para fotoproteção e antioxidante são menores que as concentrações citotóxicas, indica-se segurança no uso.

Figura 5. Gráfico de viabilidade celular da quercetina incorporada ao PEG 4000 acetilado.

As análises de Difração de Raios X revelaram que as amostras são semi cristalinas, com presença de regiões amorfas abaixo dos picos cristalinos. A incorporação da Quercetina ao PEG 4000 acetilado aumentou a natureza amorfa do material, indicando uma redução no caráter cristalino após a incorporação do flavonoide.

Figura 6. Difração do Raio X do PEG 4000 puro e acetilado e suas incorporações à Quercetina.

Conclusões

A incorporação da Quercetina ao PEG 4000, especialmente em sua forma acetilada, mostrou-se eficaz para o desenvolvimento de sistemas de liberação controlada com ação fotoprotetora. As análises confirmaram a integração do flavonoide e revelaram modificações estruturais e térmicas. Os bons índices de FPS, ausência de citotoxicidade em baixas concentrações e a preservação da microbiota cutânea reforçam a segurança e o potencial do sistema para uso tópico.

Agradecimentos

Agradecimentos a Universidade Federal de Ouro Preto (UFOP), ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), ao Laboratório de Produtos Naturais e Síntese Orgânica, ao laboratório de Biomateriais e ao NanoLab.

Referências

- Santos, Viviane Martins Rebello; SOUSA, L. R. D.; AMPARO, T. R.; NOVACK, K. M.; ANDRADE, A. L.; DOS SANTOS, ORLANDO; BARBOZA, A. P. M.; NEVES, BERNARDO. Trypanocidal Activity and Increased Solubility of Benznidazole Incorporated in PEG 4000 and Its Derivatives. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, v. 32, p. 1162-1163, 2021.
- Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin MIN DING1, JINSHUN ZHAO1, LINDA BOWMAN1, YONGJU LU1 and XIANGLIN SHI2.
- 3. Dos Santos, V. M. R.; Novack, K. M.; Silveira, B. M.; Rosa, J. S.; Macromol. Symp. 2014, 343, 78.