

SÍNTESE E CARACTERIZAÇÃO DE NANOCOMPÓSITO À BASE DE CARVÃO ATIVADO E MAGNETITA (CA/Fe₃O₄) A PARTIR DA LIXIVIAÇÃO ÁCIDA DO REJEITO DA MINERAÇÃO DE FERRO.

Luan F. Costa (G)1*, Juliana A. Torres (PQ)2, Francisco Guilherme E. Nogueira (PQ)2, Maria C. Silva (PQ)1

- ¹ Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João del Rei, São João del Rei–MG, Brasil.
- ² Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brasil

* luanfcosta.lfc@aluno.ufsj.edu.br

RESUMO

Neste trabalho, um nanocompósito magnético (CA/Fe₃O₄) foi sintetizado a partir da lixiviação ácida do rejeito da mineração de ferro e em seguida, caracterizado. A análise por Difração de Raios X (DRX) indicou a formação de nanopartículas de CA/Fe₃O₄ com tamanho médio de cristalito de 9,20 nm. A partir da Análise Termogravimétrica (TGA) verificou-se que o material é estável até aproximadamente 400 °C, e o teor de magnetita no compósito foi de 36%. Os grupos funcionais na superfície do material foram avaliados por Espectroscopia no Infravermelho por Transformada de Fourier (FTIR). O pH determinado no ponto de carga zero (pH_{pcz}) do material foi 6,22. Portanto, o material está carregado positivamente em meio ácido e negativamente em pHs mais elevados. Em conjunto, os resultados comprovam a síntese bem-sucedida de um nanomaterial com características desejáveis para aplicações diversas como adsorvente, suporte para imobilização de enzimas, liberação controlada de fármacos, entre outras.

Palavras-chave: caracterização de materiais, aproveitamento de resíduos, compósito magnético.

Introdução

O acúmulo de rejeitos da mineração de ferro (RMF) em barragens é um problema de relevância ambiental, principalmente no Brasil. O RMF é composto, geralmente, por óxidos de ferro e sílica e devido à concentração significativa de ferro em sua composição, pode ser reciclado por lixiviação ácida para obtenção de cloreto férrico, e posteriormente na síntese de materiais magnéticos (1-3).

Os nanomaterias magnéticos apresentam potencial aplicação em diversas áreas, como em suportes para imobilização de enzimas, adosrção de poluentes orgânicos e inorgânicos, em aplicações analíticas no preparo de amostras, liberação controlada de fármacos, dentre outras (3).

Neste contexto, o objetivo deste trabalho foi o aproveitamento do rejeito da mineração de ferro (RMF) para obtenção de um nanomaterial magnético compósito (CA/Fe₃O₄) com propriedades desejáveis em diversas aplicações, incluindo propriedades magnéticas.

Experimental

1. Lixiviação ácida e quantificação de Fe

Para a lixiviação ácida foram misturados 74,0 g RMF (Fe 40,98%), 15,0 mL de água destilada e 170 mL de HCl P.A., sendo a suspensão aquecida à 80°C e agitada por 2h. Após resfriamento e decantação a solução foi filtrada e a concentração de Fe(III) obtida foi filtrada e quantificada por espectrofotometria no UV-visível (1-4).

2. Sintese CA/Fe₃O₄

68 mmol de Fe III (do FeCl₃ obtido anteriormente) foram diluídos em 250 mL de água destilada. Após a adição de 8g de carvão ativado comercial (CA), a suspensão foi mantida sob agitação e aquecimento até 80 °C em atmosfera de N₂. Em seguida foram adicionados 34,5 mmol de FeSO₄.7H₂O e gotejados 50 mL de NH₄OH 28 % (v/v). A suspensão ficou sob agitação por 1 h. O precipitado preto obtido foi coletado por separação magnética, lavado até pH neutro e seco em estufa a 60 °C overnight (2-4).

3. Caracterizações

O nanocompósito foi caracterizado pelas seguintes técnicas: Difração de Raios X (DRX), Análise Termogravimétrica (TG), determinação do pH no ponto de carga zero (pH_{pcz}), Espectroscopia no Infravermelho por Transformada de Fourier (FTIR) e Microscopia Eletrônica de Varredura (MEV).

Resultados e Discussão

Os difratogramas obtidos para os materiais CA, CA/Fe₃O₄ e Fe₃O₄ e stão apresentados na (Fig.1). O carvão ativado, apresentou características amorfas, apresentando um pico de difração fraco em $2\theta = 23^{\circ}$, que se refere a reflexão do plano (002), uma característica comum de estruturas não cristalinas como o carvão ativado (4-5). Os padrões de difração de CA/Fe₃O₄ e Fe₃O₄ são semelhantes à fase padrão da magnetita.

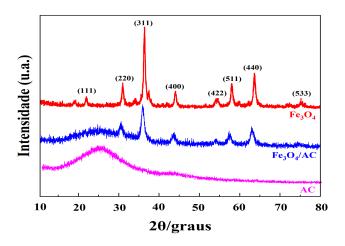


Figura 1. Difratogramas de Raios X para o Fe₃O₄, CA/Fe₃O₄ e CA.

Esses picos referem-se aos índices de Miller em 20: 18°(111), 30°(220), 35°(311), 43°(400), 53°(422), 57°(511), 73°(440) e 75°(533), e seus respectivos picos de difração (JCPDS No. 89–4319). Os resultados sugerem que as nanopartículas de Fe₃O₄ foram incorporadas com sucesso ao CA e que a síntese do nanocompósito magnético não alterou a fase do óxido de ferro (3). O tamanho médio do cristalito para as nanopartículas de Fe₃O₄ e do CA/Fe₃O₄ determinados a partir do pico de difração mais intenso (311), foram de 13,29 e 9,20 nm, respectivamente. O parâmetro de rede obtido para as nanopartículas de Fe₃O₄ e para o compósito CA/Fe₃O₄ foi de 8,39 Å, valor que é compatível com o parâmetro de rede característico da magnetita (JCPDS No. 19-0629).

De acordo com os dados obtidos para a TGA, verificou-se que o nanomaterial obtido é estável até aproximadamente 400 °C, sendo o teor de magnetita estimado no material de 36,0 % m/m.

O pH_{pcz} obtido para o material sintetizado foi 6,22. Em valores de pH < 6,22, a superfície do material apresenta carga líquida positiva e em valores de pH > 6,22, o material apresenta carga líquida negativa (7).

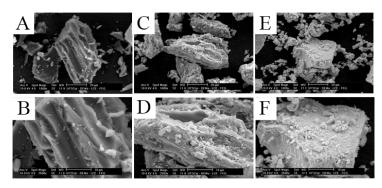

A análise dos grupos superficiais presentes no material puro e no compósito foi realizada por FTIR. A Tabela 1 mostra os principais grupos funcionais evidenciados pela análise dos espectros de ambos os materiais. Estão indicados também os grupos funcionais característicos para cada material.

Tabela 1. Análise de FTIR para o Fe₃O₄, CA/Fe₃O₄ e CA.

1. Thin the de 1 1110 para 0 1 0304, 011/1 0304 0 011.			
ō/cm ⁻¹	Material	Tipo de Vibração	Ref.
3360- 3400	Fe ₃ O ₄ , CA, CA/Fe ₃ O ₄	Estiramento O-H de hidroxilas superficiais ou moléculas de H ₂ O adsorvidas. (bandas características de ambos materiais – Fe ₃ O ₄ e CA)	(8)
1630	Fe ₃ O ₄	Flexão angular de H ₂ O adsorvida.	(8)
1590- 1600	CA, CA/Fe ₃ O ₄	Estiramento C=C de grupos aromáticos. (banda esperada para o CA)	(9)
1080- 1250	CA, CA/Fe ₃ O ₄	Estiramento C-O de fenol, éter ou álcool. (banda esperada para o CA)	(10)
546- 561	Fe ₃ O ₄ , CA/Fe ₃ O ₄	Estiramento Fe-O. (banda característica do Fe ₃ O ₄)	(11)

As micrografías (Fig.2) obtidas para para o CA puro revelam uma superfície irregular e porosa, com a presença de cavidades, o que é característico de materiais carbonáceos (4-6). A magnetita pura apresentou-se na forma de aglomerados constituídos por nanopartículas esféricas de tamanho relativamente uniforme (8).

Para o nanocompósito (CA/Fe₃O₄), as micrografías mostraram uma boa dispersão da magnetita sob superfície do carvão ativado.

Figura 2. Imagens de Microscopia Eletrônica de Varredura para o CA (A-B), CA/Fe₃O₄(C-D) e Fe₃O₄ (E-F).

Conclusões

O nanocompósito CA/Fe_3O_4 sintetizado apresentou propriedades magnéticas, estabilidade térmica, tamanho médio de cristalito de 9,20 nm e diversidade de grupos funcionais em sua superfície. Além disso, a síntese é uma alternativa para o aproveitamento do RMF, um resíduo de importância ambiental para o Estado de Minas Gerais.

Agradecimentos

À UFSJ, às agências de fomento CNPq, FAPEMIG (Projeto-APQ-00478-22, CAPES e ao meu Grupo de Pesquisa LABIM.

Referências

- 1. Castro, P. T. A. Desastres de Mariana e Brumadinho: o que aprendemos ou deixamos de aprender?, Centro de Informação Técnica, 2020.
- 2. De Almeida, V. O. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, 2019.
- 3. Sakthivel, R.; Jothivenkatachalam, K.; Berkshire, A.; Chandra, D. R. *Powder Technology* **2010**, *201*, 187-190.
- Lopes, K. L.; Fascin, D. P.; da Silva, M. L. P.; de Andrade, C. K. Z. *Microchemical Journal* 2021, *168*, 106366.
- 5. Rodrigues, S. C.; da Silva, A. C.; de Oliveira, F. J. S.; Canobre, S. C.; de Souza, C. M. A.; Bocchi, N. *Water, Air, & Soil Pollution* **2020**, *231*, 1-13.
- 6. Pereira, T. M. M. Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, 2013.
- Oliveira, H. L.; Teixeira, L. S.; Dinali, L. A. F.; Pires, B. C.; Simões, N. S.; Borges, K. B. *Microchem. J.* 2019, 150, 104162.
- 8. Dirgayanti, D. S.; Salni; Hower, J. C.; Riyanti, F. in *IOP Conference Series: Earth and Environmental Science*, 2021, Vol. 623, 012048.
- 9. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. *Identificação Espectrofotométrica de Compostos Orgânicos*, 5^a ed., Guanabara Koogan, Rio de Janeiro, 1994.
- 10. Serafin, J.; Narkiewicz, U.; Morawski, A. W.; Wróbel, R. J.; Michalkiewicz, B. *Carbon* **2023**, *201*, 633-647.
- 11. Farouk, Z.; Guesmi, F.; Hamdaoui, B.; Benaboura, A. *Polym. Bull.* **2023**, *80*, 7389–7406.