



# Determinação de BTEX em recargas de dispositivos eletrônicos para fumar utilizando DI-SPME-GC/MS

Stéphany L. A. Almeida¹(G); Gabriel P. Coelho²(G); Zenilda L. Cardeal³(PQ); Helvécio C. Menezes⁴(PQ)

¹ stephanyluisa13@gmail.com;² gabrielpardinicoelho@hotmail.com; ³ zenilda.cardeal@gmail.com;⁴ helvecio52@gmail.com

Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901 Belo Horizonte, MG, Brazil.

## RESUMO

Os dispositivos eletrônicos para fumar (DEFs) foram inicialmente criados para reduzir o consumo de cigarros convencionais, mas têm se mostrado ineficazes e prejudiciais à saúde, introduzindo novos usuários ao tabagismo, especialmente jovens. Os líquidos de recarga desses dispositivos contêm substâncias tóxicas, como compostos orgânicos voláteis (COVs), entre os quais se destacam o benzeno, tolueno, etilbenzeno e xilenos (BTEX), conhecidos por sua alta toxicidade e carcinogenicidade, especialmente o benzeno. Este estudo propõe um método para determinar a concentração de BTEX em líquidos de recarga, utilizando Microextração em Fase Sólida por Imersão Direta (DI-SPME) e análise por Cromatografia a Gás acoplada a Espectrometria de Massas (GC/MS). A validação do método mostrou limites de detecção entre 7,18 e 30,61 µg L<sup>-1</sup>, e limites de quantificação entre 11,97 e 50,61 µg L<sup>-1</sup>, com precisão satisfatória (coeficiente de variação abaixo de 20%). O método DI-SPME-GC/MS, após validação, foi aplicado na análise de amostras de líquidos de recarga de DEFs e foi capaz de quantificar o BTEX em todas as amostras. O método proposto é sensível, de baixo custo, ambientalmente amigável e pode ser aplicado para análise de outras classes de compostos presentes no DEFs.

Palavras-chave: COVs, BTEX, Cigarros eletrônicos, Tabagismo.

# Introdução

O tabagismo é uma doença crônica causada pela dependência da nicotina e é responsável por mais de oito milhões de mortes anuais no mundo, com 20% dessas mortes ocorrendo entre fumantes passivos, incluindo crianças. No Brasil, cerca de 160 mil óbitos por ano são atribuídos ao tabagismo, especialmente devido a doenças pulmonares. Para ajudar os fumantes a largar o vício, surgiram em 2003 os dispositivos eletrônicos para fumar (DEFs), como vapes e pods, que prometiam substituir os cigarros convencionais de forma mais segura. Esses dispositivos rapidamente ganharam popularidade devido ao seu apelo visual moderno, sabores variados e ausência de odores desagradáveis. Contudo, com o aumento da publicidade e o crescimento da utilização, especialmente entre os jovens, a popularidade dos DEFs se expandiu, mesmo com a proibição no Brasil desde 2009. Os líquidos de recarga desses dispositivos contêm mais de 100 compostos, incluindo compostos orgânicos voláteis (COVs) como benzeno, tolueno, etilbenzeno e xilenos (BTEX), que são substâncias tóxicas e voláteis. Apesar de os BTEX estarem presentes em várias fontes, como atividades industriais e naturais, pouco se sabe sobre os níveis desses compostos nos DEFs e seus efeitos à saúde. Este estudo propôs desenvolver um método para a extração, determinação e quantificação dos BTEX nesses líquidos.

# **Experimental**

A solução intermediária de BTEX foi preparada com concentração de 20,0 mg L<sup>-1</sup> em acetonitrila, a partir de uma mistura de 2000,0 mg L<sup>-1</sup>. Foram analisados líquidos de recarga de cigarros eletrônicos com diferentes sabores, e o líquido "iceburst". As amostras foram preparadas com 2,0 mL de cada líquido (exceto para o de frutas silvestres) diluídos em água ultrapura, aquecidos a 45 °C e agitados. A extração foi realizada com fibra PDMS 100 μm por 30 minutos. A análise cromatográfica foi feita por GC/MS, com ionização por elétrons (EI) a 70 eV, e detecção no modo SIM (*Single Ion Monitoring*) para os íons m/z 77, 78, 91, 92 e 106. O fluxo de gás hélio foi de 0.85 mL min-1.

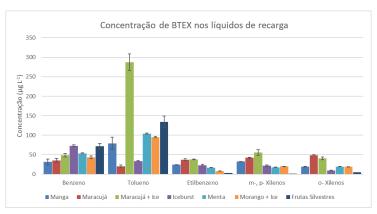



Fig.1. Esquema da extração por DI-SPME. Fonte: Adaptado de SERESHTI et al., 2020.



#### Resultados e Discussão

Foram realizados testes preliminares para otimizar um método DI-SPME-GC/MS para análise de BTEX. Inicialmente, preparou-se uma solução padrão em glicerina para simular a matriz da amostra, e utilizou-se acetonitrila para as diluições. O método foi validado com limites de detecção variando entre 7,18 e 30,61 μg L<sup>-1</sup> e limites de quantificação entre 11,47 e 50,61 μg L<sup>-1</sup>. Ao analisar a precisão, os resultados foram satisfatórios, com coeficiente de variação abaixo de 20%. O método mostrou boa resolução e seletividade, apesar da coeluição dos isômeros meta e para, como já reportado na literatura. A Fig. 2 mostra os resultados obtidos para as amostras analisadas pelo método DI-SPME-GC/MS.



**Fig. 2**: Comparação das concentrações (μg L<sup>-1</sup>) de BTEX obtidas para as amostras DEFs analisadas por DI-SPME-GC/MS. Barras de erro para n=3.

## Conclusões

Um método DI-SPME-GC/MS foi desenvolvido para determinar BTEX em líquidos de DEFs. A amostra sabor maracujá com iceburst apresentou os maiores níveis de contaminação. O benzeno foi identificado em 70% das amostras analisadas, o que representa elevado risco à saúde, inclusive para fumantes passivos. O estudo destaca a necessidade de maior fiscalização e propõe, para pesquisas futuras, analisar líquidos com diferentes composições, além do uso de cromatografia gasosa bidimensional abrangente (GCxGC) para resolver problemas relacionados à coeluições, e identificação de contaminantes emergentes.

# Agradecimentos









## Referências

- 1. S. R. Baldassarri, Clin. Chest Med. 2020, 41, 797–807.
- 2. T. M. Cavalcante, Tese de Doutorado, Instituto Nacional de Câncer, Rio de Janeiro, 2018.
- 3. J. V. M. Santos, TCC, DQ/UFMG, 2023.
- 4. H. Sereshti et al., Microchim. Acta 2020, 187.
- 5. H.-S. Shin; H.-H. Lim, Anal. Bioanal. Chem. 2017, 409, 1247–1256.
- B. Magnusson; U. Örnemark, Eds., Eurachem Guide: The Fitness for Purpose of Analytical Methods, 2nd ed., 2014.