

Empregando Planejamento Fatorial 2² Composto Central para Avaliação da Reação entre Mn²⁺ e o 5-Br-PADAP para Posterior Determinação Espectrofotométrica

Rafael T.S. Arrais*1 (G) e Frank P. Andrade1 (PQ).

- ¹ Universidade Federal de São João Del-Rei.
- * rafael.isot@aluno.ufsj.edu.br

RESUMO (Times New Roman, tam 12)

Neste trabalho, avaliou-se a reação entre o íon Mn²⁺ e o reagente 5-Br-PADAP, para posterior determinação espectrofotométrica na região do visível. Para otimizar essa reação, empregou-se um planejamento fatorial 2º composto central, variando-se o pH e a razão estequiométrica entre o metal e o ligante. A concentração de Mn²⁺ foi mantida constante em 0,1 μg/mL. A resposta analítica considerada foi o Δ_{ABS}, com base na diferença entre a absorção do ligante livre e do complexo formado. Observou-se um deslocamento batocrômico no espectro, com λmáx do complexo em 568 nm. As superfícies de resposta indicaram os pontos críticos ideais para a complexação. Os resultados sugerem que a metodologia é promissora, embora seja necessário validar a condição analítica.

Palavras-chave: Otimização Multivariada, Planejamento Fatorial Composto Central, Espectrofotometria UV-VIS.

Introdução

O manganês (Mn) é um elemento essencial para diversos processos biológicos, atuando como cofator enzimático em organismos vivos. Concentrações elevadas de Mn2+ podem causar sabor e odor desagradáveis na água de consumo humano, manchar roupas e superfícies sanitárias, além de estar associado a potenciais efeitos neurotóxicos em exposições prolongadas acima dos limites recomendados (1-2). Portanto, o monitoramento da concentração de Mn²⁺ em amostras de água é crucial para garantir a qualidade do recurso hídrico, a eficácia dos processos de tratamento e a proteção da saúde pública.

Dentre as técnicas espectrométricas empregadas na determinação de Mn²⁺, as mais empregadas são absorção atômica, absorção eletrotérmica e emissão atômica com plasma indutivamente acoplado. Apesar das elevadas seletividades e sensibilidades, estas técnicas são bastante caras e exigem manutenção dispendiosa. Assim, a Espectrofotometria UV-VIS é uma técnica alternativa que apresenta boa frequência analítica, sensibilidade e seletividade suficiente, bem como menor custo de aquisição e manutenção (3). Contudo, faz-se necessário uma etapa de complexação para formação de um cromóforo que absorva radiação na região do visível ou ultravioleta. A formação deste cromóforo pode ser obtida pelo 2-(5-bromo-2-piridilazo)-5-di-etilaminofenol PADAP), que tem sido citado em procedimentos que atendem aos princípios da química verde (4), corroborando assim, para o estabelecimento aos métodos espectrofotométricos.

Diante do exposto, este trabalho teve como objetivo, avaliar as melhores condições para promover a reação entre os íons Mn²⁺ e o 5-Br-PADAP, para posterior determinação espectrofotométrica do metal. Esta avaliação foi conduzida por um planejamento fatorial 2² composto central, para reduzir a quantidade de experimentos.

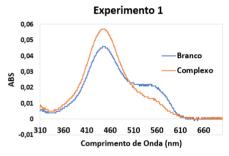
Experimental

Planejamento Fatorial 2² Composito Central.

Neste trabalho, foi avaliada a reação entre os íons Mn²⁺ e o reagente complexante 5-Br-PADAP, com o objetivo de formar um cromóforo que absorva radiação na região do visível. Para tal, os parâmetros avaliados foram o pH e a razão estequiométrica entre o metal e o ligante (5-Br-PADAP), e as condições analíticas foram conduzidas de acordo com a matriz de planejamento apresentada na Tabela 1.

Tabela 1. Matriz de Planejamento Fatorial 2² Composto Central.

The same of the sa		
Experimento	pН	Razão ¹
1	7 (-1)	1:2 (-1)
2	7 (-1)	1:3 (+1)
3	10 (+1)	1:2 (-1)
4	10 (+1)	1:3 (+1)
5	6,38 (-1,41421)	1:2,5 (0)
6	10,62 (1,41421)	1:2,5 (0)
7	8,5 (0)	1:1,79 (-1,41421)
8	8,5 (0)	1:3,21 (1,41421)
9 – 11	8,5 (0)	1:2,5 (0)

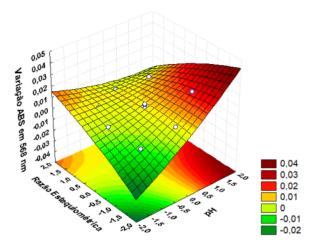

¹ Razão Estequiométrica entre o íon Mn²⁺ e o ligante 5-Br-PADAP

Para a condução dos experimentos, a concentração de Mn^{2+} foi mantida constante em 0,1 µg/mL e foi empregado uma solução 0,025% m/v de 5-Br-PADAP preparado em 1% de etanol 70% e 3,2% de Triton X-114. Após promover as reações, foram realizadas varreduras das soluções na faixa de 310 a 700 nm, empregando cubeta de quartzo com b=1 cm.

Resultados e Discussão

Observa-se na Figura 1, que o ligante 5-Br-PADAP apresenta $\lambda_{m\acute{a}x}=447$ e 448 nm, enquanto o complexo formado apresenta $\lambda_{m\acute{a}x}$ em torno de 568 nm, indicando assim, um efeito batocrômico. Para eliminar a interferência do sinal do ligante, considerou-se " Δ_{ABS} " como variável dependente na matriz de planejamento. Os resultados encontram-se na Tabela 2.

Figura 1. Espectro de Absorção Molecular do Br-PADAP (Branco) e do complexo formado na condição analítica do Experimento 1


Tabela 2. Resultados da Matriz de Planejamento Fatorial 2² Composto Central.

$\Delta_{ m ABS}$
-0,009
0,003
0,021
0,011
0,002
0,015
0,005
0,004
0,007
0,008
0,004

¹ Razão Estequiométrica entre o íon Mn²⁺ e o ligante 5-Br-PADAP

Os pontos críticos são observados neste experimento foram -0,3658 para pH e 1,1374 para razão estequiométrica. A superfície de resposta obtidas no Statistic 7 encontram-se na Figura 2.

Figura 2. Superfícies de respostas considerando Δ_{ABS} como variáveis dependentes.

As condições analíticas supracitadas são diferentes das condições descritas na literatura (3) e devem ser testadas e validadas.

Conclusões

Foi possível avaliar diferentes condições analíticas para promoção da reação entre os íons Mn²⁺ e o reagente 5-Br-PADAP, para posterior determinação por Espectrofotometria UV-VIS. As condições analíticas deverão ser testadas e validadas.

Agradecimentos

Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG.

Referências

- 1. BRASIL. Ministério da Saúde. Portaria de Consolidação nº 888, de 4 de maio de 2021. Diário Oficial da União, Brasília, DF, 7 maio **2021**. Seção 1, p. 127.
- 2. WORLD HEALTH ORGANIZATION (WHO). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization, **2017**.
- 3. I.S. Balogh, et.al.; *Intern. J. Environ. Anal. Chem.* **2012**, 92, 1059-1071.
- 4. W. Guo, et.al. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008, 4504-4507.
- 5. R.E. Ferreyra R.E., et.al.; *Fresenius J Anal Chem.* **2000**, 368, 595-600.