

Análise Físico-Química de Filmes Fotossensíveis de Quitosana e Curcumina Henrique S. Silva (G)¹, Hellen F. G. Barbosa (PQ)¹, Rafael de O. Pedro (PQ)^{1*}

¹ Universidade do Estado de Minas Gerais – UEMG, Departamento de Ciências Exatas e da Terra – DCET, Ituiutaba, MG, Brasil, 38302-192. E-mail: rafael.pedro@uemg.br

RESUMO

A quitosana é um biopolímero obtido do exoesqueleto de crustáceos, comumente usado na fabricação de biofilmes biodegradáveis para aplicação na proteção de alimentos. Neste estudo, desenvolveram-se filmes fotossensíveis de quitosana incorporados com curcumina, substância capaz de gerar espécies reativas de oxigênio (EROs) sob luz visível, promovendo a fotoinativação de microrganismos. Os filmes foram irradiados com LED azul (460 nm, 15 min, 5,40 J·cm²) para avaliar alterações físico-químicas. A quitosana foi caracterizada por titulação potenciométrica, RMN e FTIR. Os filmes foram obtidos por casting e analisados quanto à espessura, homogeneidade, ausência de defeitos, manuseabilidade, umidade, degradação em água e solo, além de DRX, que indicou alterações no padrão semicristalino com a adição da curcumina. Os resultados demonstram boa estabilidade estrutural e propriedades adequadas para uso como revestimento antimicrobiano em frutas.

Palavras-chave: quitosana, curcumina, fotossensível.

Introdução

Filmes comestíveis à base de biopolímeros vêm ganhando destaque como alternativas sustentáveis para a conservação de alimentos, atuando como barreiras físicas contra agentes externos e contribuindo para a segurança e a extensão da vida útil dos produtos. A quitosana, obtida a partir do exoesqueleto de crustáceos, apresenta propriedades como biodegradabilidade, biocompatibilidade e atividade antimicrobiana, tornando-se um dos materiais mais promissores na formulação de filmes funcionais.

A incorporação de fotossensibilizadores naturais, como a curcumina, permite a obtenção de filmes fotossensíveis com potencial aplicação na inativação fotodinâmica de microrganismos, por meio da geração de espécies reativas de oxigênio (EROs) sob luz visível. No entanto, a adição desses compostos pode alterar significativamente as propriedades estruturais e fisico-químicas da matriz polimérica, sendo fundamental a realização de análises detalhadas.

Neste contexto, o presente estudo teve como objetivo desenvolver filmes fotossensíveis de quitosana com curcumina e avaliar suas características físico-químicas e estruturais, incluindo análises de espessura, umidade, degradação, difração de raios X e efeito da irradiação com LED azul.

Experimental

Caracterização da quitosana e determinação do grau de desacetilação

O grau de desacetilação (GD), parâmetro que indica a proporção de unidades desacetiladas na estrutura da quitosana e influencia diretamente suas propriedades físico-químicas, foi determinado por

titulação potenciométrica e Ressonância Magnética Nuclear (RMN). A amostra também foi caracterizada por Espectroscopia no Infravermelho com Transformada de Fourier (FTIR).

Obtenção e caracterização dos filmes

Os filmes comestíveis foram obtidos a partir de uma solução de quitosana (1 $g \cdot L^{-1}$) em ácido acético (1% v/v), vertida em placas de Petri e submetida à secagem em estufa até a completa evaporação do solvente. Proporções variadas de curcumina foram incorporadas à solução filmogênica com o objetivo de produzir amostras com diferentes concentrações do fotossensibilizador.

Após a secagem, os filmes foram cuidadosamente removidos e submetidos à fotoativação com luz LED azul (460 nm) por 15 minutos, com irradiância de 4,90 mW·cm⁻², totalizando uma dose de 5.40 J·cm⁻².

A avaliação subjetiva considerou os seguintes critérios: ausência de rupturas ou fraturas, homogeneidade, ausência de bolhas e facilidade de manuseio, sendo cada parâmetro classificado como ótimo, regular ou satisfatório.

As amostras foram ainda caracterizadas por Espectroscopia no Infravermelho com Transformada de Fourier (FTIR) e Difração de Raios X (DRX). Adicionalmente, foram analisadas quanto à espessura, degradação em solo e permeabilidade ao vapor de água (PVA), visando avaliar suas propriedades físicas e ambientais. Os resultados foram submetidos à análise estatística utilizando ANOVA e teste de comparação de médias de Tukey ao nível de 5% de significância.

Resultados e Discussão

Caracterização da quitosana

O grau de desacetilação (GD) da quitosana foi determinado por titulação potenciométrica e Ressonância Magnética Nuclear (RMN), resultando em valores de 95,3% e 98,5%, respectivamente. Os espectros obtidos por FTIR também confirmaram a composição química característica da quitosana, evidenciando os grupos funcionais típicos do polímero. O alto grau de desacetilação observado indica que a quitosana possui propriedades adequadas para aplicação de filmes comestíveis, uma vez que as unidades desacetiladas são reconhecidamente eficientes na redução do crescimento microbiano.

Caracterização dos filmes

Os dados de espessura, degradação em solo e permeabilidade ao vapor de água (PVA) estão disponíveis na Tabela 1. Foram obtidos filmes de quitosana (QTS) e quitosana com proporções variaveis de curcumina $(2,5-20~\mu\text{M})$.

É possível notar que a presença da curcumina tende a reduzir a espessura dos filmes, que são estatisticamente diferentes do filme QTS. Em relação à degradação em solo, a adição de curcumina em baixa concentração (2,5 μ M) diminuiu a taxa de degradação, mas, à medida que a concentração aumentou, o comportamento dos filmes tornou-se estatisticamente semelhante ao controle (QTS). Além disso, a PVA é aumentada pela presença da curcumina em baixas concentrações. Isso indica que concentrações baixas a intermediárias de curcumina podem comprometer a barreira dos filmes à passagem de vapor de água, provavelmente devido à alteração da rede polimérica da quitosana. Já em concentrações elevadas de curcumina (20 μ M), há uma possível reorganização da matriz que restaura parcialmente a barreira, aproximando-se ao valor do controle. Para investigar essa hipótese, estudos de difração de raio-x foram realizados para os filmes QTS e Q.Cur20 μ M.

Tabela 1. Dados de caracterização dos filmes.

Amostras	Espessura (mm)	Degradação em solo	PVA (g.μm/m². dia.mmHg)
QTS	$0,194 \pm 0,05^{a}$	$15,3 \pm 2,1^{a}$	$16,1 \pm 0,2^{a}$
Q.Cur2,5µM	0.123 ± 0.02^{d}	$6,1 \pm 0,7^{b}$	$30,6 \pm 6,7^{b}$
Q.Cur5µM	$0,168 \pm 0,15^{b}$	$8,8 \pm 2,2^{ab}$	$34,5 \pm 6,4^{b}$
Q.Cur10µM	0.165 ± 0.09^{b}	$11,5 \pm 1,1^{ab}$	$30,6 \pm 7,5^{b}$
Q.Cur20µM	$0,140 \pm 0,04^{c}$	$18,8\pm4,9^a$	$24,5 \pm 6,3^{a}$

 \overline{D} iferentes letras dentro nas colunas indicam diferença significativa a P < 0.05

A Figura 1 exibe os padrões de difração de raio-x para os filmes de quitosana e quitosana com curcumina. A amostra de quitosana apresenta padrões de difração amplos e pouco definidos, típicos de materiais semicristalinos. A quitosana geralmente exibe um pico característico por volta de $2\theta \approx 20^\circ$, associado à sua estrutura semicristalina. A amostra contendo curcumina apresenta um aumento na intensidade dos picos difusos, especialmente entre 10° e 25° , além de um ligeiro deslocamento e ampliação da largura dos picos.

Não há picos definidos adicionais que possam ser atribuídos à curcumina cristalina pura, o que indica que a curcumina está bem dispersa na matriz polimérica ou em forma amorfa, sem separação de fases detectável por DRX.

A adição de curcumina ao filme de quitosana altera sua estrutura semicristalina, promovendo uma estrutura mais amorfa e sugerindo boa incorporação do composto bioativo na matriz. Essa modificação pode influenciar positivamente propriedades como flexibilidade, transparência e PVA, além de estar relacionada à atividade funcional antimicrobiana dos filmes.

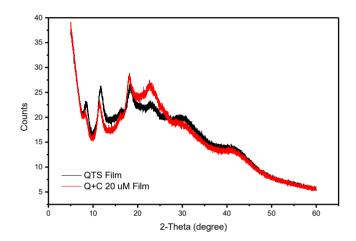


Figura 1. Padrões de difração de raio-x (DRX) para filmes de quitosana e quitosana com curcumina.

Conclusões

Os resultados demonstram que a quitosana utilizada apresentou alto grau de desacetilação, confirmado por titulação potenciométrica, RMN e FTIR. A incorporação da curcumina nos filmes resultou em alterações em suas propriedades físico-químicas, como a tendência de redução da espessura dos filmes com o aumento da concentração de curcumina, além de um aumento na permeabilidade ao vapor de água, indicando modificação na compactação da matriz polimérica.

A análise por difração de raios-x revelou que a adição de curcumina promove uma estrutura mais amorfa ao filme, sem a presença de cristais livres do composto, sugerindo sua boa dispersão e incorporação na matriz de quitosana. Essas alterações estruturais e funcionais são promissoras para aplicações em sistemas de revestimentos comestíveis, especialmente em contextos que demandem propriedades antimicrobianas. Portanto, os filmes desenvolvidos apresentam potencial para aplicação como barreiras biodegradáveis e bioativas na conservação de alimentos.

Agradecimentos

FAPEMIG (APQ-03402-22, BIP-00196-24 e APQ-04952-24).

Referências

- 1. ZAMBRANO-ZARAGOZA, M. L. et al. *Int. J. Mol. Sci.* **2018**, v. 19, p. 705-712.
- 2. MAGRI, A. et al. *Postharvest Biology and Technology*, **2024**, v. 212, p. 112873.