

Avaliação da Reutilização de Catalisador de Aerogel de NFC/Grafite-SO3H na Produção de Biodiesel via esterificação metílica e etílica

Érica Rost (PG)1* Daniel Pasquini (PQ)2

- ¹E-mail:erica.rost@ufu.br. Estudante do Programa de Pós-Graduação em Química da Universidade Federal de Uberlândia
- ²E-mail: daniel.pasquini@ufu.br. Professor do Instituto de Química da Universidade Federal de Uberlândia

RESUMO

RESUMO - Catalisadores heterogêneos ácidos, embora eficientes na produção de biodiesel, geralmente derivam de fontes fósseis. Para tanto, este estudo avaliou um catalisador renovável de aerogel de NFC/grafite sulfonado na esterificação do ácido oleico com metanol e etanol. A estabilidade morfológica e térmica do catalisador foi analisada por MEV e TGA/DTG. O catalisador foi submetido a cinco ciclos reacionais (uma reação inicial e quatro reutilizações), com monitoramento da conversão em biodiesel por FTIR. As análises confirmaram estabilidade térmica para reações (60–200°C). Na conversão via metílica, obteve-se 73% de conversão inicial, mas queda após o 3° ciclo (25%). Com etanol, as conversões da reação inicial e dos ciclos de reutilização foram estáveis (63–68%), porém menores. Micrografias mostraram preservação estrutural pós-reação. Por fim, concluiu-se que o NFC/Grafite-SO3H possui desempenho satisfatório, destacandose sua origem renovável e potencial de reutilização.

Palavras-chave: catálise ácida heterogênea, ésteres metílicos, ésteres etílicos, esterificação, reutilização catalítica.

Introdução

Catalisadores heterogêneos ácidos têm se destacado na produção de biodiesel por sua eficiência e alinhamento com os princípios da Química Verde. Entre eles, a resina de troca iônica Amberlyst, disponível em diferentes graus de reticulação, é amplamente empregada em reações de esterificação de ácidos graxos livres por ser reutilizável, de fácil separação do meio reacional e por gerar menos resíduos, características que resultam em menor custo operacional e impacto ambiental reduzido (1). No entanto, apesar de seu desempenho eficiente, o Amberlyst não é considerado um material renovável, pois é derivado de fontes fósseis (2). Diante disso, torna-se fundamental investigar alternativas que combinem boa performance catalítica com menor impacto ambiental, especialmente aquelas baseadas em matérias-primas renováveis. Neste contexto, este trabalho tem como objetivo avaliar a reutilização de um catalisador sólido de aerogel de nanofibras de celulose combinado com grafite sulfonado (NFC/Grafite-SO3H) na produção de biodiesel, por meio das reações de esterificação metílica e etílica do ácido oleico.

Experimental

Desenvolvimento do catalisador.

O procedimento de sulfonação foi realizado com base em de Lim et al. (3), envolvendo a diazotação do ácido sulfanílico e posterior reação

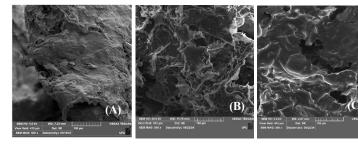
com grafite, seguida por redução com ácido hipofosforoso, lavagem e secagem do material. As NFC, em suspensão aquosa a 3% m/m, foram combinadas com o grafite sulfonado e submetidas à liofilização para a formação dos aerogéis, que foram posteriormente secos em estufa a 60 °C por 48 horas. Detalhes completos da metodologia podem ser consultados em Rost (4).

Reação de esterificação.

As reações de esterificação do ácido oleico por via metílica e etílica foram feitas com o catalisador em pedaços, em reator de aço inoxidável vedado (100 mL), imerso em banho de óleo (modelo Q213-21, marca QUIMIS). Os fatores escolhidos foram carregamento de catalisador de 5% (m/m) (5), razão molar álcool: ácido oleico 10:1, temperatura de 200° C e tempo de 3h, determinados por meio da metodologia de superfície de resposta (6). Ao final da esterificação, filtrou-se os produtos obtidos para separação do catalisador. O produto líquido passou pelo processo de rotaevaporação por 30 min para retirada de metanol ou etanol e, o mesmo foi recuperado. A rotaevaporação foi feito à 65° C para o metanol e e 80° C para o etanol, com rotação de 100 rpm. Posteriormente, o produto foi decantado. A fase superior, de coloração amarelo claro, correspondeu ao biodiesel e a fase inferior, consistiu em água e impurezas como ácido oleico não reagido e produtos de sua decomposição. O biodiesel foi então lavado sucessivamente com água a 80 °C sob agitação para retirar as impurezas residuais, resultando em um produto transparente.

Reutilização do catalisador.

Para remoção de resíduos orgânicos adsorvidos, o catalisador foi tratado com diclorometano, substância volátil e potencialmente tóxica. A mistura foi mantida em repouso por 10 min e, em seguida, realizou-se a filtração do material. O catalisador foi submetido à secagem em estufa a 60 °C, até a estabilização da sua massa.


Caracterização do catalisador reutilizado.

Para as análises de TGA, as condições usadas foram a atmosfera oxidativa, taxa de fluxo de ar de 50 mL/min, taxa de aquecimento de 10 °C/minutos e rampa de aquecimento de 25-700 °C (7). A análise das características microestruturais das amostras dos aerogéis foi feita com o MEV da marca Tescan, modelo VEGA 3 LMU. As ampliações estudadas foram de 500x, com tensão de aceleração de 5 KV. A análise de conversão foi realizada por espectroscopia no infravermelho por transformada de Fourier (FTIR), com base nos picos em 1710 cm⁻¹, atribuídos à vibração C=O de ácidos carboxílicos (como o ácido oleico), e em 1742 cm⁻¹, referentes à vibração C=O de ésteres presentes no biodiesel. A quantificação relativa desses compostos foi obtida a partir da medição da altura dos picos, utilizando-se uma linha de base comum. As intensidades foram então relacionadas por regra de três, considerando que a soma das contribuições corresponde a 100% (5).

Resultados e Discussão

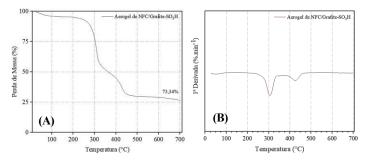

Capacidade de reutilização do material catalítico.

Figura 1. Caracterização estrutural do catalisador antes (A) e após as reações iniciais de esterificação metílica (B) e etílica (C)

A Figua 1 apresenta alterações superficiais após a reação inicial, como fissuras e resíduos, além da preservação da estrutura tridimensional, evidenciando estabilidade morfológica, estrutural e potencial de reutilização. A estabilidade estrutural do catalisador está associada menor exposição dos sítios ativos, exigindo maiores temperatura para sua ativação eficiente (6).

Figura 2. TGA (A) e DTG (B) Aerogel de NFC/Grafite-SO₃H

Os termogramas revelaram que o aerogel de nanofibras de celulose combinado com grafite sulfonado apresenta múltiplos estágios de perda de massa: O segundo estágio (286–299 °C), caracteriza a decomposição de polissacarídeos da celulose e

grupos oxigenados (8) e, o terceiro estágio (396–428 °C), indica a degradação de estruturas aromáticas estáveis, como grafite funcionalizado e resíduos carbonáceos (8) (9). Os grupos sulfônicos reduzem a estabilidade térmica em algumas regiões (enfraquecendo a rede carbônica) (10), mas aumentam a resistência em etapas posteriores, com picos de degradação até 428 °C (11). Os resultados confirmam que o material possui estabilidade térmica para aplicação em esterificação (60–200 °C), sendo viável como catalisador heterogêneo para esta reação (12).

Conversão de ácido oleico em biodiesel com catalisador reutilizado.

Tabela 1. Conversão de ácido oleico em biodiesel com catalisador reutilizado nas reações de esterificação com metanol e etanol

Ordem de reutilização	Conversão em ésteres metílicos (%)	Conversão em ésteres etílicos (%)
Reação inicial	73%	65%
1ª Reutilização	81%	63%
2ª Reutilização	72%	63%
3ª Reutilização	39%	65%
4ª Reutilização	25%	68%

A Tabela 1 apresenta os resultados de conversão de ácido oleico em biodiesel obtidos na reação inicial de esterificação e ao longo dos ciclos de reutilização. Nas primeiras reutilizações, o catalisador teve desempenho promissor, especialmente com metanol (81% no 1º ciclo), possivelmente devido a preservação e exposição de grupos sulfonados, que aumentaram a acessibilidade aos sítios ativos. No entanto, a partir do 3º ciclo, houve queda no rendimento, provavelmente por perda de grupos ácidos, acúmulo de subprodutos ou degradação estrutural. Com etanol, os rendimentos foram mais estáveis (63–68%), porém inferiores aos do metanol, possivelmente devido à menor reatividade do etanol com o ácido oleico.

Conclusões

O catalisador de aerogel de NFC/Grafite-SO₃H apresentou conversões satisfatórias e estabilidade térmica em reações de esterificação para produção de biodiesel, com maior rendimento inicial com metanol e maior estabilidade com etanol ao longo dos ciclos. Sua origem renovável e reutilização destacam seu potencial como alternativa sustentável aos catalisadores convencionais.

Agradecimentos

FAPEMIG, CAPES, CNPQ, FINEP, LABREPOL e UFU.

Referências

- 1. A.D. Burmana; R. Tambun; B. Haryanto; M. Sarah; V. Alexander, CSCEE. 2024, 10, 100928.
- 2. X. Hu; C. Ming; Q. Li; L. Zhang; C.-L. Li, Fuel Processing Technology. 2021, 222, 106958.
- 3. S. Lim; C. Y. Yap; Y. L. Pang; K. H. Wong, J. Hazard. Mater.. 2020, 390, 1-9.
- 4. É. Rost, Dissertação de Mestrado, Universidade Federal de Uberlândia, 2024.
- Lima (2018) M. H. A. Lima, Dissertação de Mestrado, Universidade Federal de São Carlos, 2020.
- É. Rost; D. Pasquini in Anais do 4° Workshop do Programa de Pós-graduação em Biocombustíveis, Uberlândia, 2025.
- 7. S. P. Ega; P. Srinivasan, *J. Solid State Electrochem.*. 2022, 25, 2235-2247.
- 8. Lima (2020) A. P. de Lima, Tese de Doutorado, Universidade Federal de Uberlândia, 2018.
- 9. M. de Oliveira; M. Poletto; T. C. Severo, Interdiscip. J. Appl. Sci.. 2018, 3, 16-20.
- X. Xiong; I. K. M. Yu; S. S. Chen; D. C. W. Tsang; L. Cao; H. Song; E. E. Kwon; Y. S. Ok;
 S. Zhang; C. S. Poon, Catal. Today, 2018, 314, 52-61.
- 11. B. Munavali; A. Torvi; M. Kariduraganavar, Polymer, 2018, 42, 293-309.
- 12. S. Han; J. Yang; H. Huang, Fuel. 2022, 315, 122815.