

A FORMAÇÃO DOS COMPLEXOS DE B. LACTOGLOBULINA COM BRIJ-58 É ESTABILIZADA POR COMPENSAÇÃO ENTALPICA-ENTROPICA

Hauster M. C. De Paula^{1,*} (PQ), Ygor R. Guimarães² (G), José A. S. Costa¹ (PQ), Thays C. Azevedo¹ (G), Carlos S. Ferreira¹ (PQ), Eliara A. Hudson³ (PQ), Ana C. S. Pires³ (PQ), Luis H. M. da Silva² (PQ).

- ¹ Universidade Federal do Oeste do Pará, Instituto de Ciências da Eduação, Santarém, Pará, Brasil; hauster.paula@ufopa.edu.br
- ² Universidade Federal de Viçosa, Departamento de Química, Viçosa, Minas Gerais, Brasil;
- ³ Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa, Minas Gerais, Brasil;

RESUMO

O estudo da dinâmica molecular da interação dos complexos formados entre proteínas-surfactantes é fundamental para o desenvolvimento de novas moléculas com potencial terapêutico. Este trabalho investiga o processo de formação dos complexos entre β -Lactoglobulina (BLG) com o Brij 58 (B58), pela técnica RPS. Os valores dos parâmetros cinéticos e termodinâmicos revelam que a formação do [BLG-B58]°, ocorre pela formação do complexo ativado, [BLG-B58] ‡ — [BLG-B58] $^{\circ}$. A formação dos complexos de transição [BLG-B58] ‡ a partir das espécies livres em solução ou através do complexo termodinamicamente estável [BLG-B58] $^{\circ}$ ocorreu em múltiplas etapas. O aumento da temperatura favorece a formação do complexo [BLG-B58] $^{\circ}$. Já os valores de ΔG° <0 mostram que, em condições padrão, o complexo [BLG-B58] $^{\circ}$ é termodinamicamente mais estável do que as espécies livres de BLG e B58, em solução. A formação do complexo [BLG-B58] $^{\circ}$ ou das espécies livres é determinada por um equilíbrio de interações hidrofóbicas e hidrofólicas.

Palavras-chave: Compensação hidrófobica-hidrofílica, dinâmica molecular, cinética química, termodinâmica.

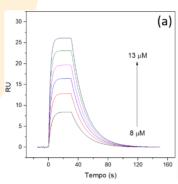
Introdução

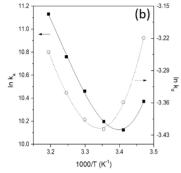
Os nanocomplexos formados por proteína-surfactante tem

aplicabilidade na indústria de cosméticos, farmaceuticas, dentre outras. Os surfactantes não iônicos como o Brij 58, que possui um região hidrofílica (grupos de óxido de etileno) e uma cadeia hidrofóbica que auxilia nos sistemas biomiméticos, controle de transporte de fármacos, até mesmo em aplicações terapêuticas¹. A formação desses complexos tem o objetivo de potencializar e/ou modificar suas propriedades funcionais. A determinação dos parâmetros cinéticos e termodinâmicos da interação proteína-surfactantes é estratégica para modular as diferentes propriedades físico-químicas de diversos sistemas coloidais. Portanto, neste trabalho determinamos os parâmetros cinéticos e termodinâmicos da formação dos complexos formados entre a proteína Beta Lactoglobulina (BLG) com o surfactante não-iônico Brij 58 (B58), utilizando a técnica de ressonância plasmônica de superficie, RPS².

Experimental

Os valores das parâmetros termodinâmicos foram obtidos pela técnica RPS utilizando o instrumento Biacore X100 (GE Healthcare, Pittsburgh, PA, EUA). Para este estudo a BLG foi imobilizada em um sensor-chip CM5 pelo método Acoplamento amina. Esse método consiste na ativação das cadeias de carboximetidextrana, fixadas ao


chip, mistura de 1-3-(N, N-dimetilamino)propil-Npela etilcarbodiimida (EDC) e N-hidroxissuccinimida (NHS) na proporção 1:1, no pH 4. Posteriormente, a solução de BLG (30 ug mL⁻¹), flui sobre a superfície do chip imobilizando a proteína. Para finalizar o processo de imobilização os grupos da cadeia da matriz de dextrana não ligados à proteína são bloqueados por uma solução de cloridrato de etanolamina. Imobilizou-se 2537 RU de densidade de carga, da BLG, minimizando a possibilidade do transporte de massa do ligante. A célula de fluxo do sistema RPS, apresenta um canal de referência (sem a BLG, canal 1) e um de amostra (com a BLG, canal 2). Soluções de B58, na faixa de concentração de 8 a 13 µM, foram preparadas na solução tampão pH 7,4. A cada experimento de interação, uma solução de B58 foi injetada em ambos canais. A resposta RU foi obtida subtraindo a resposta do canal 2 pelo canal 1. Os experimentos de ligação do B58 com a BLG foram realizados a pH 7,4 em diferentes temperaturas (15 a 40 °C).


Resultados e Discussão

A Figura 1a mostra os sensorgramas (RU x tempo (t)) da interação BLG-B58 a 298 K e pH 7,4. Os sensogramas foram ajustados às Eqs. 1-2, obtendo os valores das constantes cinéticas de associação (ka) e dissociação (kd). Através da dependência dos valores de ka e kd em função da temperatura, calculou-se os valores dos parâmetros energéticos utilizando as Eq. 3-5 que determinam o processo de

de formação do complexo ativado, tabela 1.

Figura 1. a) Sensogramas de BLG (2537 RU) imobilizada interagindo com B58. b) Gráficos de ln k_a ou ln k_d versus T ajustados ao modelo não linear de Arrhenius.

$$\begin{split} RU(t) &= RU_{max} \big[1 - e^{-k_{obs}(t-t_0)} \big] \quad Eq. \, 1 \qquad \qquad E_{act} = \Delta H^{\ddagger} + R.T \qquad \qquad Eq. \, 5 \\ RU(t) &= RU \big(t_f \big) e^{-k_d(t-t_f)} \qquad \qquad Eq. \, 2 \qquad \qquad \Delta G^{\circ} = -RT ln K_b \qquad \qquad Eq. \, 6 \\ \Delta G^{\ddagger} &= -R.T. \ln \frac{k_x.h}{K_B.T} \qquad \qquad Eq. \, 3 \qquad \qquad E_{act,x} &= -R \left(\frac{\partial ln K}{\partial 1/T} \right) \qquad \qquad Eq. \, 7 \\ T\Delta S^{\ddagger} &= \Delta H^{\ddagger} - \Delta G^{\ddagger} \qquad \qquad Eq. \, 4 \qquad \qquad T\Delta S^{\circ} = \Delta H^{\circ} - \Delta G^{\circ} \qquad \qquad Eq. \, 8 \end{split}$$

Tabela 1. Parâmetros energéticos da formação do complexo de transição do BLG-B58, pH 7,4.

Т	Fase de Associação (a)				Fase de Dissociação (d)			
	Eact	ΔH^{\ddagger}	ΔG [‡]	T∆S [‡]	Eact	ΔH^{\ddagger}	ΔG^{\ddagger}	TΔS [‡]
°C	kJ mol ⁻¹							
15	-56,02	-58,42	45,49	-103,91	-11,23	-13,62	78,48	-92,11
20	-15,03	-17,47	46,94	-64,41	-5,53	-7,97	80,03	-88,00
25	17,78	15,30	47,73	-32,44	0,19	-2,29	81,49	-83,78
30	43,14	40,62	48,06	-7,44	5,92	3,40	82,84	-79,44
35	61,72	59,16	48,03	11,13	11,66	9,09	84,10	-75,01
40	74.13	71.53	47.74	23.79	17.38	14.78	85.28	-70.50

A tabela 1 mostra a variação dos valores de $E_{a,a}^{\dagger}$, $E_{a,d}^{\dagger}$, ΔH_a^{\dagger} , ΔH_d^{\dagger} , ΔS_a^{\dagger} e ΔS_d^{\dagger} em função da temperatura (T). Os valores de $E_{a,a}^{\dagger}$ mostram que a energia liberada durante a associação das espécies livres foi maior (para T≤ 20°C) do que as energias absorvida para remover a camada de solvatação e promover as mudanças conformacionais no sítio de interação da proteína³. Os valores da $E_{a,d}^{\dagger}$ e ΔH_d^{\dagger} também aumentam com o aumento da temperatura, indicando que houve um maior conteúdo de liberação de energia entálpica no processo de [BLG-B58][‡]→[BLG-B58]°, promovido pelas formação da camada de solvatação da calda hidrofóbica do B58, conforme evidenciada pelo ganho de entropia que aumenta com o aumento da temperatura. A formação dos complexos de transição [BLG–B58][‡] a partir das espécies livres em solução ou através com complexo termodinamicamente estável [BLG-B58]° ocorreu em múltiplas etapas, conforme evidenciado pelas curvas de Arrhenius (ln ka ou ln k_d x 1/T), na figura 1b. A formação do $[BLG\!-\!B58]^\ddagger$ a partir da associação das espécies livres em solução, ($\Delta G_a^{\ddagger} = 59,16 \ kJ \ mol^{-1}$), precisam superar uma barreira energética menor compara ao processo de formação pela dissociação do [BLG-B58]°, (ΔG_a^{\dagger} = 84,10 kJ mol⁻¹). Essas barreiras de energia são resultados da energia potencial de interação (-58,42 < ΔH_a^{\ddagger} < 71,53 $kJ\ mol^{-1}$ ou – $13,62 < \Delta H_d^{\ddagger} < 14,78 \ kJ \ mol^{-1})$ e por fatores configuracionais (- $103.91 < T\Delta S_a^{\ddagger} < 23.79 \ kJ \ mol^{-1} \ {
m ou} \ -92.11 < T\Delta S_d^{\ddagger} < -50.70$ $k[mol^{-1})$. Esses fatores são causados pela mudança na camada de solvatação do sítio de interação da BLG e da cadeia do B58 também das mudanças conformacionais e das ligações de hidrogênio. Os

valores dos parâmetros ΔH_a^{\ddagger} , ΔH_d^{\ddagger} , $T\Delta S_a^{\ddagger}$ e $T\Delta S_d^{\ddagger}$ mostra que o processo da formação dos complexos ativados a partir das espécies livres ou do complexo termodinamicamente estável ocorreu por um compensação isocinética. A cinética de formação do complexo [BLG-B58]° ocorre através da formação de um [BLG-B58] ‡ .

Os valores da constante de ligação (K_b) são obtidos usando a relação $K_b = k_a/k_d$, e usados para obter os valores de ΔG° , Eq. 6. Os valores de ΔH^o foram obtidos pela aproximação de van'T Hoff e, os de $T\Delta S^\circ$ pela equação 8 (tabela 2).

Tabela 2. Parâmetros termodinâmicos padrão do complexo BLG-B58, pH 7.4.

Temperatura	K _b	ΔH°	ΔG°	TΔS°
K	10 ⁵ L mol ⁻¹		kJmol ⁻¹	
15	9,58	-44,84	-32,99	-11,85
20	7,88	-9,55	-33,09	23,54
25	8,20	17,54	-33,75	51,29
30	9,85	37,17	-34,78	71,95
35	13,01	50,02	-36,07	86,09
40	18,30	56,71	-37,54	94,25

O aumento da temperatura favorece o processo de formação dos complexos [BLG-B58]°, evidenciado pelo aumento dos valores de K_b com o aumento da temperatura. Os valores de $\Delta G^\circ < 0$ mostram que, em condições padrão, a formação do complexo [BLG-B58]° é mais favorável do que para as espécies livres de BLG e B58. Para T $\leq 20^\circ \text{C}$ o processo é dirigido entalpicamente, indicando que interações hidrofílicas determinam a formação do [BLG-B58]°. Já para T > 20°C o processo é dirigido entropicamente, sugerindo que processos de dessolvatação dirigem a estabilização do complexo. Os valores de ΔG° permaneceram razoavelmente constantes (-32,99 < $\Delta G^\circ < -37,54 \ kJ \ mol^{-1}$), com o aumento da T, no entanto, os valores de ΔH° e ΔS° aumentaram gradualmente indicando que houve uma compesação entálpica-entrópica para a formação dos complexos [BLG-B58]°, que pode ser observada no gráfico de ΔH° vs. ΔS° (gráfico não mostrado), com uma relação linear com $r^2 > 0.99$.

Conclusões

A formação do complexo [BLG-B58]° ou das espécies livres é determinada por um equilíbrio de interações hidrofóbicas e hidrofílicas. As forças hidrofóbicas é proveniente do processo de dessolvatação das regiões hidrofóbicas das moléculas interagentes enquanto as contribuições hidrofílicas vêm da formação de ligações de hidrogênio e forças dispersivas. A determinação dos parâmetros cinéticos é fundamental para caracterização do mecanismo de formação dos complexos de proteínas-surfactantes e auxiliar no desenvolvimento de novas moléculas.

Agradecimentos

CNPq, CAPES, FINEP, FAPEMIG.

Referências

¹N. Gull, et. al., J. Coll. Int. Sci. **2011**, 364, 157-162

²A. de Castro, et. al., *Int. Jour. Macr. Biol.* **2021**, 325-331.

³H. de Paula, et. al., J. Braz. Chem. Soc. 2020, 2611-2619.