

CASEINA MICELAR COMO NANOCARREADOR PARA A RUTINA: UM ESTUDO DA FORMAÇÃO DO NANOCOMPLEXO

Hauster M. C. De Paula^{1,*} (PO), Ygor R. Guimarães² (G), José A. S. Costa¹ (PO), Thays C. Azevedo¹ (G), Carlos S. Ferreira¹ (PO), Eliara A. Hudson³ (PQ), Ana C. S. Pires³ (PQ), Luis H. M. da Silva² (PQ).

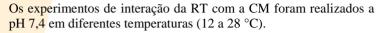
- ¹ Universidade Federal do Oeste do Pará, Instituto de Ciências da Eduação, Santarém, Pará, Brasil; hauster.paula@ufopa.edu.br
- ² Universidade Federal de Viçosa, Departamento de Química, Viçosa, Minas Gerais, Brasil;
- ³ Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Viçosa, Minas Gerais, Brasil.

RESUMO

A rutina (RT) possui propriedades antioxidantes, dentre outras. Entretanto, a RT possui baixa solubilidade em água. Moléculas bioativas ligadas as micelas de caseina podem apresentar maior estabilidade e solubilidade, usando a caseina micelar (CM) como um sistema nanocarreador. Portanto, nesse estudo investigou-se a formação desses complexos da CM-RT, por dados obtidos pela ressonância plasmônica de supercífie. A formação dos [CM-RT][‡] a partir das moléculas livres de CM e RT, ocorreu em múltiplas etapas como evidenciado nas curvas de Arrhenius, uma vez que durante esse processo as mudancas conformacionais são mais pronunciadas comparadas ao processo de [CM−RT]° →[CM−RT][‡]. que ocorre em uma única etapa. Para T < 297,15 K, as forças hidrofóbicas foram mais pronunciadas na estabilização dos complexos. Já para T > 297,15 K, observa-se que a formação dos [CM-RT]°, foi entropicamente dirigida. Este estudo é estratégico para auxiliar no desenvolvimento de novas moléculas com a RT.

Palavras-chave:Rutina, Caseina Micelar, Formação de complexos, Termodinâmica.

Introdução


A RT é um flavonoide, encontrado em frutas cítricas, e é composto pela aglicona e um dissacarídeo rutinose ligado à quercetina. A RT ação propriedades anticancerígenas, vasoprotetoras. citoprotetoras e antiosteopênicas. Entretanto, a biodisponibilidade da rutina no trato gastrointestinal é conhecida como limitada devido à sua baixa solubilidade em água, má absorção e bioacessibilidade restrita. Estudos mostram que a formação de complexos com proteínas pode aumentar a sua biodisponibilidade, bem como as propriedades antioxidantes da rutina, porém alguns experimentos, in vitru, indicaram baixa estabilidade¹. Nesse contexto, a caseina micelar, um agregado proteico, que possui canais e cavidades preenchidos com soro permite sua ligação a pequenas moléculas, como compostos hidrofóbicos, incluindo as moléculas bioativas, dentre outras. Assim, moléculas bioativas ligadas as micelas de caseina podem apresentar maior estabilidade, solubilidade e biodisponibilidade, usando a CM como um sistema nanocarreador. Portanto, nesse estudo vamos investigar a dinâmica de formação desses complexos da CM-RT, através da determinação de parâmetros cinéticos e termodinâmicos obtidos pela técnica de ressonância plasmônica de superfície (RPS)2.

Experimental

Utilizou-se a técnica espectroscópica ressonância plasmônica de

superfície (RPS). Essa técnica possui alta sensibilidade e realiza medidas em tempo real, que nos permite obter, através do ajustes em equações e modelos. os valores dos parâmetros cinéticos e termodinâmicos. O equipamento utilizado foi o o Biacore X100 (GE Healthcare, Pittsburgh, PA, EUA). Para este estudo a CM foi imobilizada em um sensor-chip CM5 pelo método Acoplamento amina. O sensor-chip CM5 conta, na sua superfície, com cadeias de carboximetidextrana (CMD), que devem ser ativadas utilizando uma mistura de dois reagentes, ambos em 1M, seja o 1-3-(N, N-dimetilamino) propil-N-etilcarbodiimida (EDC) e Nhidroxissuccinimida (NHS), no pH 4, que flui no fluxo de 10 uL min⁻ ¹, durante 7 min. Após a ativação, a solução de CM (30 ug mL⁻¹), flui sobre a superfície do chip imobilizando a proteina. As cadeias de CMD ativadas e não ligadas covalentemente com a CM precisam ser desativadas utilizando uma solução de cloridrato de etanolamina, que flui sobre o sistema no fluxo de 10 uL min⁻¹. Nessa preparação do chip imobilizou-se 2744 RU (unidades de ressonância) de densidade de carga da CM. O baixo valor de densidade de carga é fundamental para minimizar a possibilidade do transporte de massa da RT. A célula de fluxo do sistema RPS, apresenta uma canal de referência (sem a CM, canal 1) e um de amostra (com a CM, canal 2). Para o estudo da interação, soluções de RT, na faixa de concentração de 40 a 110 uM, preparadas no tampão pH 7.4, fluem sobre a superfície do sensor-chip. A cada experimento de interação, uma solução de RT foi injetada em ambos canais. A resposta RU foi obtida subtraindo a resposta do canal 2 do canal 1. Os sensorgramas mostram a dependência das unidades resssonantes com o tempo (RU vs. t).

Resultados e Discussão

Os sensogramas (não mostrados) foram ajustados às Eqs. 1-2, obtendo os valores das constantes cinéticas de associação (k_a) e dissociação (k_d). Através da dependência dos valores de k_a e k_d em função da temperatura, figura 1a, calculou-se os valores dos parâmetros energéticos utilizando as Eq. 3-5 que determinam o processo de formação do complexo ativado, tabela 1.

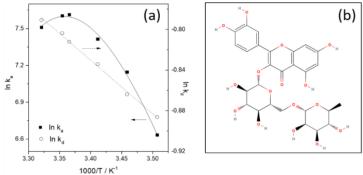


Figura 1. (a) Gráficos de ln kaou ln kaversus T. (b) Estrutura da Rutina

$$\begin{split} RU(t) &= RU_{max}[1 - e^{-k_{obs}(t - t_0)}] \quad Eq. \, 1 \qquad \qquad E_{act} = \Delta H^{\ddagger} + R.T \qquad \qquad Eq. \, 5 \\ RU(t) &= RU(t_f)e^{-k_d(t - t_f)} \qquad Eq. \, 2 \qquad \Delta G^0 = -RT \ln K_b \qquad \qquad Eq. \, 6 \\ \Delta G^{\ddagger} &= -R.T. \ln \frac{k_x.h}{K_B.T} \qquad Eq. \, 3 \qquad E_{act,x} = -R\left(\frac{\partial \ln K}{\partial 1/T}\right) \qquad Eq. \, 7 \\ T\Delta S^{\ddagger} &= \Delta H^{\ddagger} - \Delta G^{\ddagger} \qquad Eq. \, 4 \qquad T\Delta S^0 = \Delta H^0 - \Delta G^0 \qquad Eq. \, 8 \end{split}$$

Tabela 1. Parâmetros energéticos da formação do complexo de transição do CM-RT, pH 7,4.

Т	Fase de associação (a)				Fase de dissociação (d)			
	Eact	ΔH [‡]	ΔG^{\ddagger}	T∆S [‡]	Eact	ΔH [‡]	ΔG [‡]	T∆S [‡]
K	kJ mol ⁻¹							
285,15	91,85	89,48	54,00	35,48		2,02	71,83	-69,81
289,15	71,90	69,49	53,56	15,94		1,99	72,82	-70,83
293,15	43,39	40,96	53,68	-12,72		1,95	73,78	-71,83
297,15	7,04	4,57	53,95	-49,38	4,39	1,92	74,77	-72,85
298,15	-3,19	-5,67	54,16	-59,83		1,91	75,01	-73,10
301,15	-36,50	-39,00	54,97	-93,97		1,89	75,76	-73,87

A tabela 1 mostra uma barreira energética para o processo de formação do complexo intermediário a partir do complexo termodinamicamente estável ([CM-RT]° \rightarrow [CM-RT]†) de $\Delta G_d^{\dagger} \cong 74,00~kJ~mol^{-1}$, que é maior quando comparado ao processo a partir das moleculas livres em solução (CM ou RT), $\Delta G_a^{\dagger} \cong 54,05~kJ~mol^{-1}$. Essa barreira energética é modulada pela energia de interação ($-39,00 \le \Delta H_a^{\dagger} \le 89,48~kJ~mol^{-1}$ ou $\Delta H_d^{\dagger} \cong 2,0~kJ~mol^{-1}$) e por fatores configuracionais($-93,97 \le T\Delta S_a^{\dagger} \le 35,00~kJ~mol^{-1}$) ou $T\Delta S_a^{\dagger} \cong -72,05~kJ~mol^{-1}$). Os valores de ΔH_x^{\dagger} e ΔS_x^{\dagger} estão associados às energias absorvidas durante os processos moleculares de dessolvatação das moléculas de água e dos íons do tampão de análise, dos sítios de interação da CM e da RT (figura 1b), bem como a absorção de energia para promover as mudanças conformacionais nas cadeias proteicas e na molécula da RT, e da liberação de energia promovida no processo de interação da CM-RT.

A tabela 1 mostra que os valores da $E_{a,a}^{\ddagger}$ diminuem com o aumento da temperatura, indicando uma menor absorção de energia para promover as mudanças conformacionais de ambas moléculas. Já em altas temperaturas a energia liberada durante o processo de associação, promovida por interações hidrofílicas, superam a energia absorvida durante os processos moleculares citados. A formação dos $[CM-RT]^{\ddagger}$ a partir das moléculas livres de CM e RT, ocorreu em múltiplas etapas como evidenciado nas curvas de Arrhenius, uma vez que durante esse processo as mudanças conformacionais são mais pronunciadas comparadas ao processo de $[CM-RT]^{\circ} \rightarrow [CM-RT]^{\ddagger}$, que ocorre em uma única etapa, ou seja, indepentende da temperatura, apresentando um menor valor da $E_{a,d}^{\ddagger}$.

Os valores da constante de ligação (K_b) são obtidos usando a relação $K_b = k_a/k_d$, e usados para obter os valores de ΔG° , Eq. 6. Os valores de ΔH^{o} foram obtidos pela aproximação de van'T Hoff e, os de $T\Delta S^{\circ}$ pela equação 8 (tabela 2).

Tabela 2. Parâmetros termodinâmicos padrão do complexo CM-RT, pH 7.4.

Temperatura	K _b	ΔH°	ΔG°	TΔS°		
K	10 ³ L mol ⁻¹	kJmol ⁻¹				
285,15	1,84	88,49	-17,83	106,31		
289,15	3,01	67,26	-19,26	86,52		
293,15	3,82	38,48	-20,10	58,58		
297,15	4,57	2,76	-20,82	23,58		
298,15	4,49	-7,19	-20,85	13,66		
301,15	4,04	-39,32	-20,79	-18,53		

Os valores de K_b foram da ordem de 10^3 $M^{\text{-1}}$. Os valores de ΔH° e $T\Delta S^\circ$ diminuem com o aumento da temperatura. Essa grande variação nos valores $(-39,00 \le \Delta H^\circ \le 88,49 \text{ kJ mol}^{-1}$ ou $-18 \le T\Delta S^\circ \le 106,31 \text{ kJ mol}^{-1}$), e os valores de $\Delta G^\circ \cong 19,94 \text{ kJ mol}^{-1}$, evidencia que houve uma compensação da entálpico-entrópica para a estabilização dos complexos. Para T < 297,15 K, as forças hidrofóbicas foram mais pronunciadas na estabilização dos complexos. Já para T > 297,15 K, observa-se que a formação dos $[CM-RT]^\circ$, foi entropicamente dirigida onde as ligações de hidrogênio e forças de van der Waals são de maior magnitude.

Conclusões

Os valores de ΔG° indicam que a formação dos complexos [CM-RT]°, são mais estáveis comparado às espécies livres (CM ou RT) em solução e que este processo é entropicamente dirigido em T < 297,15 K e entalpicamente dirigido em T > 297,15 K, onde as ligações de hidrogênio e forças de van der Waals são mais pronunciadas para a estabilização dos complexos. A determinação dos parâmetros cinéticos e termodinâmicos é estratégica para determinação da estabilidade dos complexos formados, bem como para auxiliar no desenvolvimento de novas moléculas.

Agradecimentos

CNPq, CAPES, FINEP, FAPEMIG.

Referências

¹REMANAN, et. al., *Food. Chem.* **2021**, 353, 128534 ²ZHAO, et. al., *Int. Jour. Macr. Biol.* **2024**, 135748.