

Influência do solvente em processo catalítico auto-tandem *one-pot* para a síntese de odorante comercial via emprego do heteropoliácido H₃PW₁₂O₄₀

Nathalia C. Moura (G)^{1,*}, Jéssica L. A. de Azevedo (G)¹, Camila G. Vieira (PQ)^{1,*}, Kelly A. da Silva Rocha (PQ)^{1,*}

¹Laboratório de Catálise, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35.400-000, Ouro Preto, Minas Gerais, Brasil. *camilagrossi@ufop.edu.br e kellyrocha@ufop.edu.br

RESUMO

A importância do solvente em processos químicos envolve aspectos ambientais, técnicos e econômicos. Sua interação com os constituintes do meio de reação, como substrato, produto, catalisador e intermediários, influencia a velocidade e a seletividade das reações. Neste trabalho, avaliou-se a influência do solvente no desempenho do catalisador heteropoliácido comercial $H_3PW_{12}O_{40}$ (PW) em um processo auto-tandem do tipo *one-pot* para a síntese de um odorante comercializado como Clarycet[®]. Os resultados demonstraram que solvente cetônico butan-2-ona favoreceu a atuação do PW nas etapas sequenciais de ciclização do tipo Prins e acetilação, necessárias à formação do Clarycet[®]. Sob condições ambiente em 30 minutos, o Clarycet[®] foi obtido com rendimento de 86% empregando-se quantidade reduzida de PW. Os estudos realizados comprovaram que a escolha do solvente não é trivial e corresponde a um importante parâmetro a ser otimizado nos processos químicos empregando-se catalisadores ácidos.

Palavras-chave: processo auto-tandem, solvente, heteropoliácidos, odorante, química fina

Introdução

O solvente representa a maior fração da massa total envolvida na reação química e sua escolha não deve ser realizada considerando somente os impactos ambientais. Suas contribuições sobre outros parâmetros relevantes, tais como, a velocidade da reação e seletividade dos produtos de interesse devem ser mensuradas (1,2). Na catálise por ácidos, em particular por heteropoliácidos (HPAs), trabalhos divulgados na literatura evidenciaram a influência do solvente no direcionamento da reação, interferindo na formação seletiva de produtos específicos (3, 4).

Os HPAs são catalisadores com propriedades físico-quimicas atrativas, as quais viabilizam o êxito da sua aplicação em diversas classes de reações químicas sob diferentes condições, dentre as quais encontram-se as reações de acetilação e ciclização Prins. Resalta-se que as propriedades e caracteríticas dos HPAs os tornam catalisadores promissores à substituição de ácidos mineiras tradicionais, destacando-se, dentre suas vantagens, sua elevada força ácida e a viablidade de sua recuperação e recilcagem em processos nos quais são empregados como catalisadores homogêneos (5-8).

Neste trabalho foi avaliado o efeito do solvente sobre a performance do catalisador H₃PW₁₂O₄₀ (PW) na realização de um processo de síntese auto-tandem *one-pot* para a obtenção do acetato de 4-metil-2-propiltetraidro-2*H*-piran-4-il, comercializado como uma mistura racêmica de diastereoisômeros de odorantes sintéticos pela International Flavors & Fragrances (IFF) sob o nome comercial: Clarycet[®] (9). Neste processo, o Clarycet[®] é obtido através das reações sequenciais de ciclização Prins e acetilação, mediante a adição ao reator de todos os componentes no início do processo, e

sem a necessidade de intervenção ao longo da reação, conforme ilustrado na Figura 1.

Figura 1. Representação equemática dos contituintes empregados para a obtenção do Clarycet[®]

Experimental

Testes Catalíticos

Os experimentos foram conduzidos e analisados conforme o esquema ilustrado na **Figura 2**.

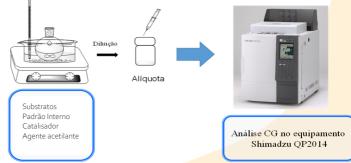


Figura 2. Esquema de montagem da reação e análise das alíquotas via técnica de cromatografía a gás (CG)

Isolamento e caracterização dos produtos

Os produtos após isolados por cromatografia em coluna foram posteriormente caracterizados como os diastereoisômeros (2S,4R)-Clarycet® (syn) e (2S,4S)-Clarycet® (anti - o qual apresenta maior tempo de retenção nas condições cromatográficas empregando colunas semi-polar) via a correlação dos dados obtidos por cromatografia gasosa acoplada à espectrometria de massas (CG-EM) e por ressonância magnética nuclear (RMN) com as caracterizações previamente já divulgadas (10-11).

Resultados e Discussão

Na **Tabela 1** encontram-se os resultados representativos da avaliação da performance catalítica do PW nos solventes avaliados.

Tabela 1. Avaliação da influência do solvente no desempenho do catalisador H₃PW₁₂O₄₀ (PW) comercial na formação do Clarycet[®] via processo auto-tandem de ciclização Prins-acetilação a 25°C ^a

EXP	Solvente/ Contante dielétrica (ε)	Tempo min	Conversão %	Intermediário syn/anti %	Clarycet ^{®,b} syn/anti %	Desidratados %	Outros ^C %
1	metoxibenzeno $\varepsilon = 4,30$	30 360	87 100	17/22 15/17	-/9 6/13	26 29	26 20
2	4-metilpentan-2-ona ε=18,50	360 24hrs	61 92	23/63 22/57	2/2 3/9	10 9	-
3	butan-2-ona ε =18,90	10 30	100 100	4/-	29/53 30/56	10 14	4
4	propan-2-ona ε =21,01	180 540	68 100	21/60 19/54	-/- -/2	-	19 25
5	6,8dioxabiciclo[3.2.1]octan- 4-ona ε = 38,80	60 360	27 54	52/48 52/43	-/- -/-	-	5
6	4-metil-1,3-dioxolan-2-ona $\varepsilon = 64,90$	60 24h	89 100	18/26 17/20	5/7 11/14	2 1	44 37

^a Condições de reação: 0,5 mmol isoprenol; 0,5 mmol butanal; 1,0 mmol de anidrido acético; 0,5 mmol de dodecano (padrão interno), solvente (totalizando 5,00mL) e catalisador heteropoliácido comercial - H₃PW₁₂O₄₀ (PW).

Pode-se constatar que o solvente influencia fortemente na atuação do PW e no rendimento para produto desejado comercializado como Clarycet[®]. Solventes com baixas e ou com elevadas constante dielétricas como o metoxibenzeno e a 4-metil-1,3-dioxolan-2-ona, respectivamente, inibem a formação do Clarycet[®] e favorecem a ocorrência de reações paralelas levando principalmente a obtenção de compostos não detectáveis por cromatografia a gás.

O solvente 6,8-dioxabiciclo[3.2.1]octan-4-ona derivado da biomassa, se configura como uma opção sustentável de solvente em comparação aos solventes orgânicos tradicionais. No processo estudado, se mostrou relativamente promissor para a realização da reação de ciclização Prins correspondente a primeira etapa necessária para a formação do produto de interesse. A atuação do PW na conversão dos reagentes iniciais, isoprenol e butanal foi mais lenta porém, altamente seletiva para os intermediários a serem acetilados. Sendo verificada a supressão das reações paralelas, tanto de desidratação dos intermediários obtidos, quanto reações secundárias responsáveis

pela formação de oligômeros. Porém, não viabilizou a atuação do PW na realização da acetilação.

Os solventes cetônicos em geral, viabilizaram a ocorrência da reação de ciclização de Prins. No entanto, somente no solvente butan-2-ona foi verificada a ocorrência da reação de acetilação e consequentemente a formação do Clarycet[®], com rendimento final de 86% nas condições avaliadas. O desempenho do PW no solvente 4-metilpentan-2-ona foi similar ao observado no solvente 6,8-dioxabiciclo[3.2.1]octan-4-ona em termos de conversão do isoprenol e butanal. Em acetona, contudo a ocorrência de reações secundáras foi representativa, similar ao observado para o uso do metoxibenzeno como solvente.

Deste modo, pode-se inferir que não há uma correlação trivial entre o perfil do solvente em termos de constante diéltrica e desempenho do PW no processo estudado. Atestando que não é intuitiva a escolha do solvente mais promissor, sendo esse um importante parâmetro que deve ser otimizado mediante a avaliação de um escopo de solventes disponíveis compatíveis com o processo a ser desenvolvido.

Conclusões

Foi comprovado que o tipo de solvente empregado no processo de síntese do Clarycet® influencia diretamente no rendimento final para a sua obtenção. Portanto, a escolha do solvente deve ser otimizada, pois trata-se de um parâmetro não trivial e não intuitivo. O solvente cetônico butan-2-ona propiciou um melhor desempenho do $\rm H_3PW_{12}O_{40}$ na realização do processo, favorecendo tanto a reação da ciclização do tipo Prins quanto a reação de acetilação, necessárias para se obter o produto desejado, com rendimento final atrativo equivalente a 86%, sob condições ambientes.

Agradecimentos

LABMASSAS/DEQUI/UFOP, LMCM/Escola de Farmácia/UFOP, PROPPI/UFOP, PPGQuim-UFOP, FAPEMIG.

Referências

- 1. I. Onyido, O.F. Obumselu, C.I. Egwuatu, N.H. Okoye, *Front. Chem.* **2023**, 11:1176746.
- 2. P.J. Dyson, P.G.Jessop, Catal. Sci. Technol. 2016, 6, 3302-3316.
- 3. G. Yang, K.Li, K. Zeng, Y. Li, T. Yu, Y. Liu, RSC Adv. 2021, 11, 10610–10614.
- 4. N.L. Lataliza-Carvalho, R.F. Cotta, R.A. Martins. K.A. da Silva Rocha, E.F. Kozhevnikova, I.V. Kozhevnikov, E.V. Gusevskaya, *Mol. Catal.* 554 (2024) 113863.
 - 5. E.V. Gusevskaya, *ChemCatChem*, **2014**, 6, 1506-1515.
 - 6. I.V. Kozhevnikov, *Catalysts for Fine Chemical Synthesis: Catalysis by Polyoxometalates*; I. V., Kozhevnikov, Ed.; Wiley: Liverpool, **2002**.
- 7. M.M.B. Silva; C.G. Vieira; K.A. da Silva Rocha, *Mol. Catal.* **2023**, 547, 113302.
- 8. A.L.P. De Meireles, M.D.S. Costa, K.A. Da Silva Rocha, E. V. Gusevskaya, *Appl. Catal. A Gen.* **2015**, 502, 271–275.
- 9. L.D. Sekerová; Z. Vavříková; T. T. Do; E. Vyskočilová; L. Červený, *Res. Chem. Intermed.*, **2023**, 49, 577-587.
- 10. A. Abate, et al. Helv. Chim. Acta 2004, 87 (4),765-780.
- 11. S.V. Bhat, R.D. Gaikwad, K.R. Vaze, WO2016059648A1, 2015.

^bMistura racêmica de diastereoisômeros: (2S,4S)-4-metil-2-propiltetrahidro-2*H*-piran-4-ol (diastereoisômero *syn*) e (2S,4R)-4-metil-2-propiltetrahidro-2*H*-piran-4-ol (diasteroisômero *anti*).

^cOutros produtos minoritários oriundos de reações secundárias dos reagentes presentes no meio de reação detectáveis ou produtos não detectáveis via análise por CG (oligômeros).