

Desenvolvimento de eletrodo impresso com tinta condutora à base de material carbonáceo e modificado com nanopartículas de ouro para determinação eletroquímica de azitromicina

Sthephane P. De Oliveira (G)*1, Arnaldo C. Pereira (PQ)1

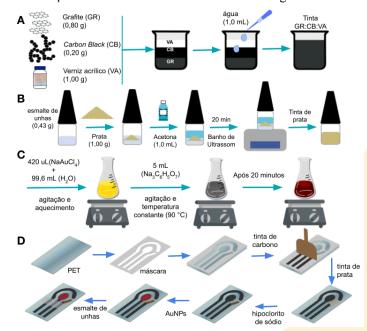
¹ Departamento de Ciências Naturais, UFSJ, sthephaneo@gmail.com

RESUMO

RESUMO - Neste trabalho, foi desenvolvido um sensor eletroquímico impresso por serigrafia, em suporte de polietileno tereftalato (PET), para determinação eletroquímica de azitromicina. A tinta otimizada (10% *Carbon Black*, 45% grafite, 45% verniz acrílico em água) foi caracterizada por Voltametria Cíclica (VC) e Microscopia Eletrônica de Varredura (MEV). Nanopartículas de Ouro (AuNPs) foram sintetizadas e caracterizadas por Espectroscopia UV-Vis e Difração de Raios x. As AuNPs contribuíram para um aumento na área eletroativa (30%) e na condutividade do sensor (20%). Sob condições otimizadas, (tampão Britton-Robinson 0,1 mol L⁻¹, pH 11,0) e pela técnica de cronoamperometria (0,5 V, 180 s), o sensor apresentou faixa linear com resposta entre 25,00 e 400,00 μmol L⁻¹, sensibilidade de 0,02 μA/μmol L⁻¹, limite de detecção de 3,43 μmol L⁻¹ e limite de quantificação de 11,44 μmol L⁻¹. A aplicabilidade do sensor denominado como SPCE/AuNP foi avaliada em amostras de água de torneira e em formulação farmacêutica com recuperações entre 98,05 e 100,37%.

Palavras-chave: eletrodo impresso, água, verniz acrílico, nanopartículas de ouro, azitromicina

Introdução

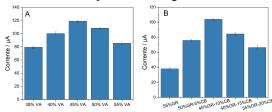

A azitromicina (AZI) é um antibiótico considerado um dos compostos mais prejudiciais ao meio ambiente devido ao seu consumo inadequado e descarte incorreto, gerando consequências aos seres humanos e vida marinha, havendo a necessidade de métodos que visem identificar e quantificar a existência de resíduos deste material em amostras de água. O desenvolvimento de sensores eletroquímicos é uma alternativa para esse tipo de análise, possibilitando análises de baixo custo, sem necessidade de pré-tratamento das amostras e com respostas rápidas, além de altas sensibilidade e seletividade [1]. O verniz acrílico é um solvente capaz de proporcionar flexibilidade à tinta condutora além de permitir a utilização de água como solvente, o que se alinha com os princípios da química verde, promovendo práticas mais sustentáveis na produção de tintas condutoras [2]. O emprego de nanomateriais na modificação de sensores eletroquímicos tem ganhado destaque devido aos beneficios significativos que oferece. Entre os materiais proeminentes nessa categoria, destacam-se as nanopartículas de ouro (AuNPs) cujas vantagens incluem síntese e manuseio facilitados, eficiente efeito catalítico em reações eletroquímicas, aprimoramento da transferência de elétrons, além do aumento da sensibilidade do sensor [3].

Com base no exposto, este trabalho emprega eletrodos impressos utilizando uma tinta à base de grafite e *Carbon Black*, verniz acrílico e água, modificado com nanopartículas de ouro e em suporte PET para determinação eletroquímica de azitromicina em amostras reais.

Experimental

Desenvolvimento do eletrodo impresso

O processo de preparo das tintas, síntese das AuNPs, impressão e modificação dos eletrodos estão demonstrados a seguir:


Figura 1. Esquemas dos processos de desenvolvimento: A) da tinta condutora à base de carbono, B) da tinta de prata, C) da síntese das AuNPs, D) da impressão e modificação dos eletrodos.

SBQ - MG

Resultados e Discussões

Primeiramente foi otimizada a composição da tinta condutora de carbono, variando a porcentagem de *Carbon Black*, grafite e verniz acrílico para o preparo da tinta. A condição ótima foi: 10%, 45% e 45%, respectivamente (Figura 2). Posteriormente, foi otimizado o design e tamanho dos eletrodos, tendo como condição ótima o formato presente na Figura 1-D.

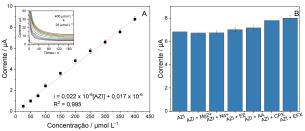


Figura 2. A) Otimização da quantidade de aglutinante na tinta. B) Otimização da quantidade de grafite e *Carbon Black* na tinta. Meio reacional: Tampão Britton-Robinson (0,1 mol L^{-1} , pH 11,0) na presença de $K_4[Fe(CN_6)]$ (1,5 mmol L^{-1}).

O eletrodo de trabalho foi modificado com nanopartículas de ouro para melhorar o desempenho eletroquímico do sensor. A quantidade utilizada para modificar o sensor foi otimizada em 25 μL . A área eletroativa calculada foi de 18,17 mm² para o eletrodo modificado com AuNPs, representando um aumento de 30% em relação à área efetiva do eletrodo não modificado (14,05 mm²). Isso demonstra que o uso de AuNPs aumentou significativamente a área eletroativa, contribuindo assim para o aprimoramento da reatividade química e da condutividade do sensor, melhorando sua sensibilidade.

Em seguida, foram avaliados os parâmetros experimentais, sendo as condições ótimas: solução tampão Britton-Robinson (0,1 mol L-1, pH 11,0) empregando a técnica de cronoamperometria (0,5 V, 180 s). Com estes parâmetros foi obtida a curva analítica (Figura 3-A), sendo possível calcular os LD (3,43 μ mol L-1) e LQ (11,44 μ mol L-1). Também foi observada uma ampla faixa linear de resposta (25-400 μ mol L-1) e uma sensibilidade de 0,02 μ A/ μ mol L-1. Esses resultados estão próximos aos encontrados na literatura para determinação de azitromicina [4].

A seletividade do sensor foi avaliada em relação a possíveis espécies interferentes durante a oxidação da azitromicina em amostras de água de torneira e fármaco. Essas espécies incluíram os íons Na⁺ e Mg²⁺, etinilestradiol (EE), ácido ascórbico (AA), enrofloxacina (EFX) e ciprofloxacina (CPX) (Figura 3-B). Não houve interferência significativa das espécies, demonstrando o bom desempenho do sensor.

Figura 3. A) Curva analítica para diferentes concentrações (25-400 μmol L⁻¹) da solução padrão de AZI. B) Estudo de seletividade do sensor frente a possíveis espécies interferentes. Meio reacional: Tampão Britton-Robinson (0,1 mol L⁻¹, pH 11,0).

Além disso, a aplicabilidade do sensor proposto foi avaliada em amostras reais de água, pelo método de adição e recuperação, e em fármaco aplicando o Teste t, conforme a Tabela 1, apresentando resultados bastante satisfatórios.

Tabela 1. Determinação de azitromicina em amostras de água de torneira e de fármaço.

Amostra	Concentração adicionada (µmol L ⁻¹)	Concentração detectada (µmol L ⁻¹)	DPR (%)	Recupera ção (%)
água de torneira	0,00	-	-	-
	40,00	39,68	3,24	99,20
	200,00	200,74	1,99	100,37
	350,00	348,01	2,42	99,43
fármaco (azitromicina di-hidratada CIMED)	40,00	39,80	2,83	99,49
	200,00	196,55	4,26	98,28
	350,00	343,17	3,02	98,05

Conclusões

Neste trabalho, foi desenvolvido um sensor impresso por serigrafia em suporte PET para detecção de azitromicina. A tinta otimizada, composta por grafite em pó, *Carbon Black*, verniz acrílico e água, demonstrou boa condutividade além de ser inovadora e alinhada aos princípios da química verde, pois emprega a água como solvente. A modificação com AuNPs melhorou significativamente o desempenho do sensor, aumentando sua condutividade elétrica e sensibilidade.

O sensor proposto apresentou um limite de detecção de 3,43 $\mu mol~L^{-1}$ e sensibilidade de 0,02 $\mu A/\mu mol~L^{-1}$. Além disso, o sensor demonstrou sucesso na aplicação em amostras de água de torneira e formulação farmacêutica, com recuperações próximas a 100% e sem efeito de matriz, comprovando sua eficiência, que associada a simplicidade, rapidez e baixo custo operacional do método indicam seu potencial promissor para a determinação de azitromicina.

Agradecimentos

UFSJ-DCNAT, FAPEMIG, CAPES, CNPq, GPPE e LABSENSOR

Referências

- 1. G.S. Malvessi; T.D. Hoppe; E. Zapp; D. Brondani, *Measurement* **2024**, 231, 114601.
- 2. M. Şen; M. Oguz; İ. Avci. *Talanta* **2024**, 268, 125341.
- 3. L.M. Ferreira; I.F. Reis; P.R. Martins; L.H. Marcolino; M.F. Bergamini; J.R. Camargo; B.C. Janegitz; F.C. Vicentini. *Talanta Open* **2023**, 7, 100201.
- 4. J. Zhang; F. Quoquab; J. Mohammad. *Arab Gulf Journal of Scientific Research* **2024**, 42, 44-67.