

Novos Complexos de Ru(II)/mercaptos/2,2'-dipiridilamina: Síntese, Caracterização e Citotoxidade

Rafael R. Santana (PG) ^{1*}, Marcos V. Palmeira-Mello(PQ) ¹, Camila B. Pinto(PQ)², Javier A. Ellena(PQ)², Alzir A. Batista (PQ) ¹ Email: wendelrafaelrs@gmail.com

¹Universidade Federal de São Carlos, São Carlos, SP - Brasil; ²Universidade de São Paulo, São Carlos - SP, Brasil

RESUMO

Foram obtidos 5 novos complexos de Ru(II), os quais foram caracterizados pelas técnicas de condutividade molar, análise elementar, voltametria cíclica e de pulso diferencial, espectroscopia de absorção na região do infravermelho e do ultravioleta-visível, espectrometria de massas, ressonância magnética nuclear de ³¹P{¹H}, ¹H, ¹³C e difração de raios X. Os complexos apresentaram elevado grau de pureza. Foram realizados testes de interação com o DNA, visando esclarecer o mecanismo de ação destes compostos e estão sendo realizados testes de citotoxicidade contra células tumorais e não tumorais.

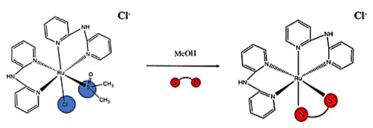
Palavras-chave: Rutênio, Câncer, Mercaptos, 2,2'-dipiridilamina.

Introdução

Dados da literatura mostram que complexos contendo ligantes mercaptopiridínicos apresentam atvidades anticancerígenas promissoras (1). Assim, este trabalho tem como objetivo a síntese, caracterização e estudo da atividade antitumoral de novos complexos de rutênio (II) contendo como ligantes a 2,2'- dipiridilamina (Hdpa) e mercaptopiridinas, tais como a 2-mercaptopiridina (1), 2-mercaptopirimidina (2), 2-mercaptotiozolina (3), 4,6-diamino-2-mercapto-pirimidina (4) e 2-mercaptopiridina-3-ácido carboxílico (N-S) (5).

Experimental

Solventes e reagentes.


Os solventes (diclorometano, metanol, tolueno, dimetilsulfóxido e éter etílico), de procedência Synth P.A ou Merck P.A., utilizados no desenvolvimento dos experimentos, foram utilizados como recebidos, sem tratamento prévio.

Síntese do precursor [RuCl(Hdpa)2(dmso)-S]Cl

Os complexos de interesse foram sintetizados a partir do precursor [RuCl(Hdpa)₂(dmso)-S]Cl, já descrito na literatura (2).

Síntese e Caracterização

A rota sintética para obtenção dos complexos é apresentada na Figura 1, a seguir:

Figura 1. Rota sintética simplificada para a obtenção dos complexos. (S-N) = ligante mercapto.

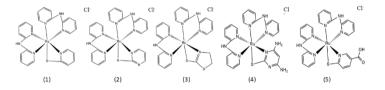


Figura 2. Estrutura dos complexos (1-5).

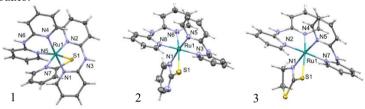
Resultados e Discussão

As sínteses dos complexos foram acompanhadas por voltametria cíclica, obtendo-se espectros de RMN de ¹H dos produtos, condizentes com as estruturas esperadas. Após, foram realizadas as demais caracterizações que comprovam que os compostos foram, de fato, obtidos, de forma pura.

Os dados de condutância molar (Tabela 1) foram obtidos utilizando-se concentrações de 1,0x10⁻³ mol.L⁻¹ dos complexos, em MeOH. Os resultados mostram que todos os complexos apresentam espécies 1:1, o que sugere a coordenação bidentada dos ligantes utilizados, tornando o complexo final catiônico, sendo necessária a presença do contra-íon, no caso, Cl⁻.

Tabela 1: Dados de condutividade média e potenciais redox

	E_{pa}	Epc	Δ_{Ep}	$E_{1/2}$	Condutividade	
Complexos					molar*	
		(m	V)		(S.cm ² .mol ⁻¹)	
1	475,1	353,6	121,5	414,3	0,34	
2	610,2	529,1	81,1	569,7	64,73	
3	487,4	387,2	100,2	437,3	67,82	
4	531,8	416,3	115,5	474,0	74,8 <mark>0</mark>	
5	475,2	393,7	81,5	434,4	70 <mark>,94</mark>	


^{*} medidas de condutividade realizadas em Metanol (62-123) em S.cm².mol⁻¹ a 25°C.

Os potenciais de oxidação dos complexos encontram-se na Tabela 1, onde se pode observar que o mais alto se refere ao composto 2, devido à presença do segundo átomo de nitrogênio do ligante 2-mercaptopirimidina. Ao contrário, o complexo 1, o qual não possui outro substituinte no anel, apresentou o menor potencial de oxidação, da série. Os complexos 3, 1 e 4 apresentaram processos quasi-reversíveis, enquanto os 2 e 5 apresentaram processos reversíveis.

Para os complexos 1, 2 e 3 suas estruturas cristalinas foram determinadas, apresentando o íon Cl⁻ como contra-Ion, Figura 3, abaixo.

Figura 3. Estruturas cristalinas dos complexos 1, 2 e 3, obtidos com elipsóides a 30% de probabilidade. O contra-íon Cl⁻ foi omitido para maior clareza.

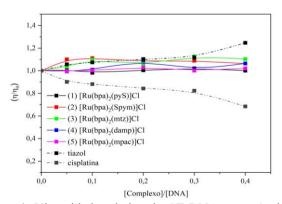

Os dados de análise elementar para os complexos estão apresentados na Tabela 2, abaixo. Para os cinco complexos sintetizados obteve-se resultados satisfatórios os quais mostram que os complexos foram obtidos com alta pureza.

Tabela 2: Teores de C, H, N e S teóricos e experimentais

Complexos	Composição	%C	%Н	%N	%S
(1)	C_H_CIN_RuS	50,97	3,76	16,64	5,44
	25 22 /	(51,06)	(4,12)	(16,73)	(5,51)
(2).0,6CH_CI_	C_H_CI_N_RuS	46,09	3,49	17,48	5,00
2 2	24.6 22.2 2.2 8	(46,51)	(3,66)	(17,63)	(5,18)
(3)	C H CIN RuS	46,26	3,71	16,42	10,74
	23 22 / 2	(46,26)	(3,83)	(16,64)	(10,86)
(4)	C_H_CIN_RuS	42,29	3,79	22,80	5,21
	24 23 10	(46,49)	(3,74)	(22,59)	(5,17)
(5)	$C_{26}H_{22}CIN_7O_2RuS$	49,47	3,61	15,67	5,11
	26 22 7 2	(49,33)	(3,50)	(15,49)	(5,06)

^{*} Valor teórico entre parêntesis.

Foi realizado o experimento de viscosidade relativa do Ct-DNA (Figura 4), na qual os complexos foram comparados aos controles tiazol (intercalação) e cisplatina (ligação covalente). Os compostos mantiveram-se inalterados.

Figura 4: Viscosidade relativa do CT-DNA na ausência e na presença dos complexos e dos padrões laranja de tiazol e cis-Pt (0, 5, 10, 20, 30 e 40 μ M), em diferentes razões molares [Composto]/[DNA]=0,00; 0,05; 0,10; 0,20; 0,30 e 0,40 com concentração constante de CT-DNA de 100 μ M/L e 20% de DMSO.

Outros experimentos estão sendo realizados para compreender melhor o tipo de interação apresentado entre os complexos e o Ct-DNA, podendo ser eletrostáticas, na qual os complexos, os quais possuem carga positiva interagem por meio dos grupos fosfatos do DNA que possuem carga negativa, ou interações pelos sucos, que podem ocorrer por outras interações como ligações de hidrogênio ou contatos hidrofóbicos, eletrostáticos dentre outros (4).

Conclusões

Foram obtidos 5 novos complexos de Ru(II) contendo o ligante 2,2'-dipiridilamina e ligantes mercaptos, os quais foram caracterizados por diversas técnicas e apresentaram elevada pureza confirmada pelo resultado da análise elementar. Testes iniciais indicam que os mesmos não interagem com o DNA por ligação covalente nem por intercalação, havendo a necessidade de novos testes para entender melhor o mecanismo de ação destes compostos, os quais estão em andamento, tais como dicroísmo circular e eletroforese em gel, assim como os ensaios de citotoxicidade para entender quais os compostos mais promissores para dar prosseguimento àos estudos.

Agradecimentos

À FAPESP, pela bolsa de doutorado concedida; Processos: 2025/01813-2; 2020/13447-2 e 2021/01787-0. À CAPES e CNPq pelos auxilios financeiros que permitem a boa infra-estrutura de trabalho.

Referências

- 1. M. M. Da Silva; M. S. De Camargo; R. S. Correa; S. Castelli; A. R. De Grandis; J. E. Takarada; E. A. Varanda; E. E. Castellano; V. M. Deflon; M. R. Cominetti; A. Desideri; A. A. Batista. *Dalton Trans.*, **2019**, 48, 14885-14897.
- 2. M. Toyama; D. Mishima; R. Suganoya; N. Nagao. *Inorg. Chem. Acta.*, **2018**, 478 104-111.
- 3. G. H. Ribeiro; A. A. Batista; A. P. M. Guedes; T. D. de Oliveira; C. R. S. T. B. De Correia; L. Colina-Vegas; M. A. Lima; J. A. Nóbrega; M. R. Cominetti; F. V. Rocha; A. G. Ferreira; E. E. Castellano; F. R. & Teixeira. *Inorg. Chem.*, 2020, 59 (20): 15004-15018.
- 4. A. Kellett; Z. Molphy; C. Slator; V. Mckee; N. Farrell. p. *chem. soc. rev.* 48:, **2019**, 971-988.